Created
November 16, 2011 04:30
-
-
Save pchiusano/1369239 to your computer and use it in GitHub Desktop.
GADT support in Scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** GADTs in Scala and their limitations */ | |
/** Background: what is an algebraic data type (ADT) ? | |
* ADT: (possibly) recursive datatype with sums and products | |
* In scala - a trait with case classes (case class is product, subtyping is sum) | |
*/ | |
/** Motivation: untyped embedded DSL doesn't prevent nonsensical expressions */ | |
sealed trait Expr { | |
def apply(other: Expr) = Ap(this, other) | |
def eval: Expr = this match { | |
case Ap(f,e) => f.eval match { | |
case Fn(f) => f(e).eval(e.eval).eval | |
case f2 => sys.error("application of non-function") | |
} | |
case _ => this | |
} | |
} | |
case class S(s: String) extends Expr | |
case class N(i: Int) extends Expr | |
case class Ap(f: Expr, arg: Expr) extends Expr | |
case class Fn(f: Expr => Expr) extends Expr | |
object Untyped { | |
def main(args: Array[String]): Unit = { | |
val x = N(1) | |
val factorial = Fn { case N (i) => N ((1 to i).product) } | |
val f4 = factorial(x) | |
val f5 = factorial(S("hello world!")) // compiles fine!!! :( | |
println (f5.eval) | |
} | |
} | |
/** Generalized algebraic data types (GADTs) let you give a different type | |
* to each data constructor. Also, pattern matching on each data constructor | |
* allows you to recover and appropriately refine type information. | |
* (Scala does not fully support this) | |
*/ | |
trait Expr2[A] { | |
def eval: A | |
} | |
case class Atom2[A](a: A) extends Expr2[A] { | |
def eval = a | |
} | |
case class Ap2[A,B](f: Expr2[A => B], arg: Expr2[A]) extends Expr2[B] { | |
def eval = f.eval(arg.eval) | |
} | |
case class Fn2[A,B](f: Expr2[A] => Expr2[B]) extends Expr2[A => B] { | |
def eval = (a: A) => f(Atom2(a)).eval | |
} | |
object GADT1 { | |
/** This implementation also compiles - suggested by Mark Harrah. | |
* Note the use of (existential) type variables in pattern. */ | |
def eval[A](e: Expr2[A]): A = e match { | |
case Atom2(a) => a | |
case Ap2(f,a) => eval(f)(eval(a)) | |
case f: Fn2[a,b] => ((x:a) => eval(f.f(Atom2[a](x)))) | |
} | |
def main(args: Array[String]): Unit = { | |
val x = Atom2(4) | |
val factorial = Fn2 { (e: Expr2[Int]) => Atom2 ((1 to e.eval).product) } | |
val e = Ap2(factorial, x) | |
// val e2 = Ap2(factorial, Atom2("w00t")) // error!! | |
println (e.eval) | |
} | |
} | |
/** More problems with deep pattern matching and lack of type refinement in pattern matching */ | |
/** GADTs for stream transforming functions */ | |
trait F[A,B] { | |
def eval: List[A] => List[B] | |
// def optimize: F[A,B] = this | |
def pipe[C](f: F[B,C]): F[A,C] = Pipe(this, f) | |
def |[C](f: F[B,C]): F[A,C] = this pipe f | |
} | |
case class MapF[A,B](f: A => B) extends F[A,B] { | |
def eval = _ map f | |
override def pipe[C](g: F[B,C]) = g match { | |
case MapF(g) => MapF(f andThen g) | |
/** Commented out lines do not compile, the pattern match does not refine | |
* the type B to a (x,y) for some types, x, y */ | |
// case g2: Flip[a,b] => MapF(f andThen (_.swap)) | |
// case Flip() => MapF(f andThen (_.swap)) | |
case _ => Pipe(this,g) | |
} | |
} | |
case class Par[A,B,C,D](f: F[A,B], g: F[C,D]) extends F[(A,C), (B,D)] { | |
def eval = l => f.eval(l.map(_._1)) zip g.eval(l.map(_._2)) | |
override def pipe[E](h: F[(B,D),E]) = h match { | |
case Par(f2, g2) => Par(f pipe f2, g pipe g2) | |
/** This code does not compile */ | |
// case Pipe(Flip(), Par(g2,f2)) => Par(f pipe f2, g pipe g2) pipe Flip() | |
case _ => Pipe(this, h) | |
} | |
} | |
case class Flip[A,B]() extends F[(A,B),(B,A)] { | |
def eval = _ map { case (a,b) => (b,a) } | |
} | |
case class Pipe[A,B,C](f: F[A,B], g: F[B,C]) extends F[A,C] { | |
def eval = f.eval andThen g.eval | |
} | |
object GADT2 { | |
def main(args: Array[String]): Unit = { | |
val x = MapF((x: Int) => x+1) | |
val y = MapF((x: Int) => x*2) | |
val z = x.pipe(y).eval(List(1,2,3)) | |
println(z) | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Note that the following code works in Haskell: