Last active
August 13, 2020 00:27
-
-
Save pedrominicz/4fe4720c076bc553e97bf70d2e2a1940 to your computer and use it in GitHub Desktop.
Permutation group of a type.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import algebra.group | |
import tactic | |
-- Special thanks to Yakov Pechersky, Alex J. Best and the other folks on | |
-- Zulip. | |
-- https://leanprover.zulipchat.com/#narrow/stream/113489-new-members/topic/Holes.20in.20the.20goal! | |
section | |
parameters {α : Type*} [nonempty α] | |
def perm : Type* := {f : α → α // function.bijective f} | |
@[simp] def perm.mul : perm → perm → perm := | |
λ ⟨f, hf⟩ ⟨g, hg⟩, ⟨f ∘ g, function.bijective.comp hf hg⟩ | |
@[simp] lemma perm.mul_def (f g : perm) : | |
perm.mul f g = ⟨f.val ∘ g.val, function.bijective.comp f.property g.property⟩ := | |
begin | |
cases f with f hf, | |
cases g with g hg, | |
simp | |
end | |
@[simp] def perm.id : perm := ⟨id, function.bijective_id⟩ | |
open function (left_inverse) (right_inverse) | |
@[simp] lemma function.left_inverse_iff_right_inverse {β : Type*} {f : α → β} {g : β → α} : | |
left_inverse f g ↔ right_inverse g f := | |
⟨function.left_inverse.right_inverse, function.right_inverse.left_inverse⟩ | |
lemma perm.inv' (f : perm) : | |
∃ g : perm, left_inverse g.val f.val ∧ right_inverse g.val f.val := | |
begin | |
cases f with f hf, | |
rw function.bijective_iff_has_inverse at hf, | |
cases hf with g hg, | |
use g, | |
{ rw function.bijective_iff_has_inverse, | |
use f, | |
rwa and.comm }, | |
{ simpa using hg } | |
end | |
noncomputable def perm.inv (f : perm) : perm := classical.some (perm.inv' f) | |
lemma perm.mul_left_inv (f : perm) : | |
perm.mul (perm.inv f) f = perm.id := | |
begin | |
let g := perm.inv' f, | |
rw perm.mul_def, | |
congr, | |
cases classical.some_spec g with h₁ h₂, | |
ext x, | |
exact h₁ x | |
end | |
noncomputable instance perm.group : group perm := | |
{ mul := perm.mul, | |
mul_assoc := λ ⟨_, _⟩ ⟨_, _⟩ ⟨_, _⟩, by simp, | |
one := perm.id, | |
one_mul := λ ⟨_, _⟩, by simp [has_mul.mul], | |
mul_one := λ ⟨_, _⟩, by simp [has_mul.mul], | |
inv := perm.inv, | |
mul_left_inv := perm.mul_left_inv } | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment