Skip to content

Instantly share code, notes, and snippets.

@pedrovgp
Last active August 22, 2024 05:32
Show Gist options
  • Save pedrovgp/b46773a1240165bf2b1448b3f70bed32 to your computer and use it in GitHub Desktop.
Save pedrovgp/b46773a1240165bf2b1448b3f70bed32 to your computer and use it in GitHub Desktop.
Allow upserting a pandas dataframe to a postgres table (equivalent to df.to_sql(..., if_exists='update')
# Upsert function for pandas to_sql with postgres
# https://stackoverflow.com/questions/1109061/insert-on-duplicate-update-in-postgresql/8702291#8702291
# https://www.postgresql.org/docs/devel/sql-insert.html#SQL-ON-CONFLICT
import pandas as pd
import sqlalchemy
import uuid
import os
def upsert_df(df: pd.DataFrame, table_name: str, engine: sqlalchemy.engine.Engine):
"""Implements the equivalent of pd.DataFrame.to_sql(..., if_exists='update')
(which does not exist). Creates or updates the db records based on the
dataframe records.
Conflicts to determine update are based on the dataframes index.
This will set primary keys on the table equal to the index names
1. Create a temp table from the dataframe
2. Insert/update from temp table into table_name
Returns: True if successful
"""
# If the table does not exist, we should just use to_sql to create it
if not engine.execute(
f"""SELECT EXISTS (
SELECT FROM information_schema.tables
WHERE table_schema = 'public'
AND table_name = '{table_name}');
"""
).first()[0]:
df.to_sql(table_name, engine)
return True
# If it already exists...
temp_table_name = f"temp_{uuid.uuid4().hex[:6]}"
df.to_sql(temp_table_name, engine, index=True)
index = list(df.index.names)
index_sql_txt = ", ".join([f'"{i}"' for i in index])
columns = list(df.columns)
headers = index + columns
headers_sql_txt = ", ".join(
[f'"{i}"' for i in headers]
) # index1, index2, ..., column 1, col2, ...
# col1 = exluded.col1, col2=excluded.col2
update_column_stmt = ", ".join([f'"{col}" = EXCLUDED."{col}"' for col in columns])
# For the ON CONFLICT clause, postgres requires that the columns have unique constraint
query_pk = f"""
ALTER TABLE "{table_name}" ADD CONSTRAINT {table_name}_unique_constraint_for_upsert UNIQUE ({index_sql_txt});
"""
try:
engine.execute(query_pk)
except Exception as e:
# relation "unique_constraint_for_upsert" already exists
if not 'unique_constraint_for_upsert" already exists' in e.args[0]:
raise e
# Compose and execute upsert query
query_upsert = f"""
INSERT INTO "{table_name}" ({headers_sql_txt})
SELECT {headers_sql_txt} FROM "{temp_table_name}"
ON CONFLICT ({index_sql_txt}) DO UPDATE
SET {update_column_stmt};
"""
engine.execute(query_upsert)
engine.execute(f'DROP TABLE "{temp_table_name}"')
return True
if __name__ == "__main__":
# TESTS (create environment variable DB_STR to do it)
engine = sqlalchemy.create_engine(os.getenv("DB_STR"))
indexes = ["id1", "id2"]
df = pd.DataFrame(
{
"id1": [1, 2, 3, 3],
"id2": ["a", "a", "b", "c"],
"name": ["name1", "name2", "name3", "name4"],
"age": [20, 32, 29, 68],
}
).set_index(indexes)
df_update = pd.DataFrame(
{
"id1": [1, 2, 3],
"id2": ["a", "a", "b"],
"name": ["surname1", "surname2", "surname3"],
"age": [13, 44, 29],
}
).set_index(indexes)
df_insert = pd.DataFrame(
{
"id1": [1],
"id2": ["d"],
"name": ["dname"],
"age": [100],
}
).set_index(indexes)
expected_result = (
pd.DataFrame(
{
"id1": [1, 2, 3, 3, 1],
"id2": ["a", "a", "b", "c", "d"],
"name": ["surname1", "surname2", "surname3", "name4", "dname"],
"age": [13, 44, 29, 68, 100],
}
)
.set_index(indexes)
.sort_index()
)
TNAME = "test_upsert_df"
upsert_df(df=df, table_name=TNAME, engine=engine)
upsert_df(df=df_update, table_name=TNAME, engine=engine)
upsert_df(df=df_insert, table_name=TNAME, engine=engine)
result = pd.read_sql_table(TNAME, engine).set_index(indexes).sort_index()
assert (result == expected_result).all().all()
print("Passed tests")
@jBbL81
Copy link

jBbL81 commented Jan 7, 2022

how do i solve this error:

UndefinedColumn                           Traceback (most recent call last)
~\AppData\Local\Programs\Python\Python38\lib\site-packages\sqlalchemy\engine\base.py in _execute_context(self, dialect, constructor, statement, parameters, execution_options, *args, **kw)
   1801                 if not evt_handled:
-> 1802                     self.dialect.do_execute(
   1803                         cursor, statement, parameters, context

~\AppData\Local\Programs\Python\Python38\lib\site-packages\sqlalchemy\engine\default.py in do_execute(self, cursor, statement, parameters, context)
    731     def do_execute(self, cursor, statement, parameters, context=None):
--> 732         cursor.execute(statement, parameters)
    733 

UndefinedColumn: column "None" named in key does not exist

@pedrovgp
Copy link
Author

pedrovgp commented Jan 7, 2022

It does not seem related to this snippet. Can you send the head(5) of your dataframe? I am guessing there is something wrong with the column names. Maybe duplicated column names? Or empty ones?

@jBbL81
Copy link

jBbL81 commented Jan 7, 2022

here's the full code:

scraped_data_list = []

n = 1
while n <= 2:
    get_page_number = driver.find_element(By.CSS_SELECTOR, 'span.pageNumberElement').text
    print(f'Working on page {get_page_number}...')

    soup = BeautifulSoup(driver.page_source, 'lxml')
    listings = soup.select('li.productListItem')

    for listing in listings[:1]:
        title = listing.select_one('.bc-heading').get_text().strip()
        link = listing.select_one('.bc-link').get('href')
        link = link.split('?')[0]
        link = 'https://www.audible.com' + link
        date = listing.select_one('li.releaseDateLabel').get_text()
        date = date.split(':')[1].strip() # removes 'Release date:' and any whitespace
        date = datetime.strptime(date, "%m-%d-%y").strftime("%Y-%m-%d")
        
        try:
            rating = listing.select('li.ratingsLabel span')[6].get_text()
            rating = rating.split(' ')[0] # removes 'ratings'
            rating = rating.replace(',', '')
            rating = int(rating)
        except:
            rating = 0
        
        scraped_data_dict = {
            'title': title,
            'rating': rating,
            'date': date,
            'link': link
        }

        scraped_data_list.append(scraped_data_dict)

    driver.find_element(By.CSS_SELECTOR, 'span.nextButton a').click()
    time.sleep(random.randint(5, 10))    
    n += 1

df = pd.DataFrame(scraped_data_list)
df

i only have 4 rows in my dataframe (my scraper is still in the testing phase so i didn't want to scrape thousands of rows) and here's the full error (sorry that it's in image format):

@pedrovgp
Copy link
Author

You did not set an index for your table, the index name is None by default. Just set an index or index name and it should work.

@Chunkford
Copy link

Chunkford commented Jan 12, 2022

Thanks for creating this.
I needed to use a different schema and set the dtypes, if it's of any use?

  ....
  from typing import Dict
  
  
  def upsert_df(df: pd.DataFrame, table_name: str, engine: sqlalchemy.engine.Engine, schema: str='public', dtypes: Dict=None):
      """Implements the equivalent of pd.DataFrame.to_sql(..., if_exists='update')
      (which does not exist). Creates or updates the db records based on the
      dataframe records.
      Conflicts to determine update are based on the dataframes index.
      This will set primary keys on the table equal to the index names
      1. Create a temp table from the dataframe
      2. Insert/update from temp table into table_name
      Returns: True if successful
      """
  
      # If the table does not exist, we should just use to_sql to create it
      if not engine.execute(
          f"""SELECT EXISTS (
              SELECT FROM information_schema.tables 
              WHERE  table_schema = '{schema}'
              AND    table_name   = '{table_name}');
              """
      ).first()[0]:
          df.to_sql(table_name, engine, schema=schema, dtype=dtypes)
          return True
  
      # If it already exists...
      temp_table_name = f"temp_{uuid.uuid4().hex[:6]}"
      df.to_sql(temp_table_name, engine, schema=schema, dtype=dtypes, index=True)
  
      index = list(df.index.names)
      index_sql_txt = ", ".join([f'"{i}"' for i in index])
      columns = list(df.columns)
      headers = index + columns
      headers_sql_txt = ", ".join(
          [f'"{i}"' for i in headers]
      )  # index1, index2, ..., column 1, col2, ...
  
      # col1 = exluded.col1, col2=excluded.col2
      update_column_stmt = ", ".join([f'"{col}" = EXCLUDED."{col}"' for col in columns])
  
      # For the ON CONFLICT clause, postgres requires that the columns have unique constraint
      query_pk = f"""
      ALTER TABLE "{schema}"."{table_name}" ADD CONSTRAINT {table_name}_unique_constraint_for_upsert UNIQUE ({index_sql_txt});
      """
      try:
          engine.execute(query_pk)
      except Exception as e:
          # relation "unique_constraint_for_upsert" already exists
          if not 'unique_constraint_for_upsert" already exists' in e.args[0]:
              raise e
  
      # Compose and execute upsert query
      query_upsert = f"""
      INSERT INTO "{schema}"."{table_name}" ({headers_sql_txt}) 
      SELECT {headers_sql_txt} FROM "{schema}"."{temp_table_name}"
      ON CONFLICT ({index_sql_txt}) DO UPDATE 
      SET {update_column_stmt};
      """
      engine.execute(query_upsert)
      engine.execute(f'DROP TABLE "{schema}"."{temp_table_name}"')
  
      return True
      
...

@bachkukkik
Copy link

bachkukkik commented Mar 9, 2022

As I use engine from sqlmodel which has SQLAlchemy 2.0 underneath. Direct engine.execute() is no longer supported. It needs to be inside connection object so I adjusted your code as below

Also I'm not sure about This InternalError: (psycopg2.errors.InFailedSqlTransaction) current transaction is aborted, commands ignored until end of transaction block when connection object tries to execute "INSERT INTO ..." but adding conn.execute(sqlmodel.text("commit")) helps

ps.1 type(engine) from sqlmodel is sqlalchemy.future.engine.Engine
ps.2 The strings inside conn.execute() needs to be a class of sqlalchemy.sql.elements.TextClause so i cast it by sqlmodel.text(...)

Here is my code:

import pandas as pd
import sqlalchemy
import uuid
import os
import sqlmodel

## https://gist.github.com/pedrovgp/b46773a1240165bf2b1448b3f70bed32
def sqlmodel_upsert_df(engine: sqlalchemy.future.engine.Engine, df: pd.core.frame.DataFrame, db_name: str, table_name: str, if_exists='fail'):
    """
    Implements the equivalent of pd.DataFrame.to_sql(..., if_exists='update')
    (which does not exist). Creates or updates the db records based on the
    dataframe records.
    Conflicts to determine update are based on the dataframes index.
    This will set primary keys on the table equal to the index names
    1. Create a temp table from the dataframe
    Returns: True if successful
    2. Insert/update from temp table into table_name

    Example
    --------
    >>> from modules import database_utils
    >>> import pandas as pd
    >>> import sqlmodel
    >>> df = pd.DataFrame(...)
    >>> engine = sqlmodel.create_engine('postgresql://postgres:password@localhost:5432/postgres')
    >>> database_utils.sqlmodel_upsert_df(df.set_index('some_key'), 'some_table_name', engine)
    """
    ## Check input validity
    assert (isinstance(db_name, str)) and (len(table_name) > 0)
    assert (isinstance(table_name, str)) and (len(table_name) > 0)
    assert (isinstance(df, pd.core.frame.DataFrame)) and (df.shape[0] > 0)

    ## Try to create `db_name` if not exist
    sqlmodel_create_database(engine, db_name)

    with engine.connect() as conn:
        try:
            assert engine.url.database == db_name
        except AssertionError:
            engine = sqlmodel_create_postgres_engine(
                    engine.url.host,
                    engine.url.port,
                    engine.url.username,
                    engine.url.password,
                    db_name
                )

    if if_exists == 'replace':
        with engine.connect() as conn:
            df.to_sql(table_name, engine, if_exists=if_exists)
            return True

    # If the table does not exist, we should just use to_sql to create it
    with engine.connect() as conn:
        if not conn.execute(
            sqlmodel.text(
                f"""SELECT EXISTS (
                    SELECT FROM information_schema.tables 
                    WHERE  table_schema = 'public'
                    AND    table_name   = '{table_name}');
                    """
            )
        ).first()[0]:
            df.to_sql(table_name, engine)
            return True

    # If it already exists...
    temp_table_name = f"temp_{uuid.uuid4().hex[:6]}"
    df.to_sql(temp_table_name, engine, index=True)

    index = list(df.index.names)
    index_sql_txt = ", ".join([f'"{i}"' for i in index])
    columns = list(df.columns)
    headers = index + columns
    headers_sql_txt = ", ".join(
        [f'"{i}"' for i in headers]
    )  # index1, index2, ..., column 1, col2, ...

    # col1 = exluded.col1, col2=excluded.col2
    update_column_stmt = ", ".join([f'"{col}" = EXCLUDED."{col}"' for col in columns])

    # For the ON CONFLICT clause, postgres requires that the columns have unique constraint
    query_pk = f"""
    ALTER TABLE "{table_name}" ADD CONSTRAINT {table_name}_unique_constraint_for_upsert UNIQUE ({index_sql_txt});
    """
    with engine.connect() as conn:
        try:
            conn.execute(sqlmodel.text(query_pk))
        except Exception as e:
            # relation "unique_constraint_for_upsert" already exists
            if not 'unique_constraint_for_upsert" already exists' in e.args[0]:
                raise e

        # Compose and execute upsert query
        query_upsert = f"""
        INSERT INTO "{table_name}" ({headers_sql_txt}) 
        SELECT {headers_sql_txt} FROM "{temp_table_name}"
        ON CONFLICT ({index_sql_txt}) DO UPDATE 
        SET {update_column_stmt};
        """
        conn.execute(sqlmodel.text("commit"))
        conn.execute(sqlmodel.text(query_upsert))
        conn.execute(sqlmodel.text(f'DROP TABLE "{temp_table_name}"'))
        conn.commit()

        return True

df_test = pd.DataFrame(...)
engine = sqlmodel.create_engine(os.getenv("DB_STR"))
upsert_df(df_test.set_index('some_key'), 'table_name', engine)
## True

@pascaloberle
Copy link

Hi here this is so useful and impressive @pedrovgp would you have a similar function for SQLite engine instead of PostgreSQL I believe the syntax would vary a bit but keen on trying something similar on SQLite

@pedrovgp
Copy link
Author

Hi Pascal, I never tried anything like it in SQLite. You can try providing a sqlite engine (instead of a postgres one) to the function to probe it.

@kennethjmyers
Copy link

Hey Pedro, do you know what causes the exception here? I started encountering it and I don't understand it. The table doesn't have the unique constraint but it thinks it does?

@kennethjmyers
Copy link

I think I know what causes this and how to fix this. I believe it is caused when two tables are using the same constraint name. It can be remedied with something like the following so that each table has a unique constraint name and they don't share them:

      constraint_name = f"unique_constraint_for_{table_name}_upsert"
      query_pk = f"""
      ALTER TABLE "{table_name}" DROP CONSTRAINT IF EXISTS {constraint_name};
      ALTER TABLE "{table_name}" ADD CONSTRAINT {constraint_name} UNIQUE ({index_sql_txt});
      """  # it's saying the index names must be unique
      engine.execute(query_pk)

I seemed to stop getting the error after making this change.

@pedrovgp
Copy link
Author

Yes that was the problem. Nice fix by the way, as far as I remember, I was creating and deleting the constraint in the end.

@triberichard
Copy link

triberichard commented May 28, 2023

How does this compare to https://github.com/ThibTrip/pangres/wiki/Upsert ?

Edit: this solution produced an exception:

  File "/home/jupyter-admin/.local/lib/python3.9/site-packages/sqlalchemy/engine/default.py", line 717, in do_execute
    cursor.execute(statement, parameters)
psycopg2.errors.SyntaxError: syntax error at or near "-"

Resolved it by replacing with ThibTrip/pangres#74 (comment)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment