Skip to content

Instantly share code, notes, and snippets.

@pengpengliu
Created September 2, 2020 09:18
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save pengpengliu/295179d73533b4c993375472eb75ea8a to your computer and use it in GitHub Desktop.
Save pengpengliu/295179d73533b4c993375472eb75ea8a to your computer and use it in GitHub Desktop.
Created using remix-ide: Realtime Ethereum Contract Compiler and Runtime. Load this file by pasting this gists URL or ID at https://remix.ethereum.org/#version=soljson-v0.6.6+commit.6c089d02.js&optimize=false&gist=
// contracts/GLDToken.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;
import "https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.1.0/contracts/token/ERC20/ERC20.sol";
contract BTCToken is ERC20 {
constructor() public ERC20("Bitcoin", "BTC") {
uint256 initialSupply = 21000000000000000000000000;
_mint(msg.sender, initialSupply);
}
}
/**
*Submitted for verification at Etherscan.io on 2020-05-04
*/
pragma solidity =0.5.16;
interface IUniswapV2Factory {
event PairCreated(address indexed token0, address indexed token1, address pair, uint);
function feeTo() external view returns (address);
function feeToSetter() external view returns (address);
function getPair(address tokenA, address tokenB) external view returns (address pair);
function allPairs(uint) external view returns (address pair);
function allPairsLength() external view returns (uint);
function createPair(address tokenA, address tokenB) external returns (address pair);
function setFeeTo(address) external;
function setFeeToSetter(address) external;
}
interface IUniswapV2Pair {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
function name() external pure returns (string memory);
function symbol() external pure returns (string memory);
function decimals() external pure returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(address from, address to, uint value) external returns (bool);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint);
function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
event Mint(address indexed sender, uint amount0, uint amount1);
event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
event Swap(
address indexed sender,
uint amount0In,
uint amount1In,
uint amount0Out,
uint amount1Out,
address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);
function MINIMUM_LIQUIDITY() external pure returns (uint);
function factory() external view returns (address);
function token0() external view returns (address);
function token1() external view returns (address);
function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
function price0CumulativeLast() external view returns (uint);
function price1CumulativeLast() external view returns (uint);
function kLast() external view returns (uint);
function mint(address to) external returns (uint liquidity);
function burn(address to) external returns (uint amount0, uint amount1);
function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
function skim(address to) external;
function sync() external;
function initialize(address, address) external;
}
interface IUniswapV2ERC20 {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
function name() external pure returns (string memory);
function symbol() external pure returns (string memory);
function decimals() external pure returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(address from, address to, uint value) external returns (bool);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint);
function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
}
interface IERC20 {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
function name() external view returns (string memory);
function symbol() external view returns (string memory);
function decimals() external view returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(address from, address to, uint value) external returns (bool);
}
interface IUniswapV2Callee {
function uniswapV2Call(address sender, uint amount0, uint amount1, bytes calldata data) external;
}
contract UniswapV2ERC20 is IUniswapV2ERC20 {
using SafeMath for uint;
string public constant name = 'Uniswap V2';
string public constant symbol = 'UNI-V2';
uint8 public constant decimals = 18;
uint public totalSupply;
mapping(address => uint) public balanceOf;
mapping(address => mapping(address => uint)) public allowance;
bytes32 public DOMAIN_SEPARATOR;
// keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
mapping(address => uint) public nonces;
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
constructor() public {
uint chainId;
assembly {
chainId := chainid
}
DOMAIN_SEPARATOR = keccak256(
abi.encode(
keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'),
keccak256(bytes(name)),
keccak256(bytes('1')),
chainId,
address(this)
)
);
}
function _mint(address to, uint value) internal {
totalSupply = totalSupply.add(value);
balanceOf[to] = balanceOf[to].add(value);
emit Transfer(address(0), to, value);
}
function _burn(address from, uint value) internal {
balanceOf[from] = balanceOf[from].sub(value);
totalSupply = totalSupply.sub(value);
emit Transfer(from, address(0), value);
}
function _approve(address owner, address spender, uint value) private {
allowance[owner][spender] = value;
emit Approval(owner, spender, value);
}
function _transfer(address from, address to, uint value) private {
balanceOf[from] = balanceOf[from].sub(value);
balanceOf[to] = balanceOf[to].add(value);
emit Transfer(from, to, value);
}
function approve(address spender, uint value) external returns (bool) {
_approve(msg.sender, spender, value);
return true;
}
function transfer(address to, uint value) external returns (bool) {
_transfer(msg.sender, to, value);
return true;
}
function transferFrom(address from, address to, uint value) external returns (bool) {
if (allowance[from][msg.sender] != uint(-1)) {
allowance[from][msg.sender] = allowance[from][msg.sender].sub(value);
}
_transfer(from, to, value);
return true;
}
function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external {
require(deadline >= block.timestamp, 'UniswapV2: EXPIRED');
bytes32 digest = keccak256(
abi.encodePacked(
'\x19\x01',
DOMAIN_SEPARATOR,
keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline))
)
);
address recoveredAddress = ecrecover(digest, v, r, s);
require(recoveredAddress != address(0) && recoveredAddress == owner, 'UniswapV2: INVALID_SIGNATURE');
_approve(owner, spender, value);
}
}
contract UniswapV2Pair is IUniswapV2Pair, UniswapV2ERC20 {
using SafeMath for uint;
using UQ112x112 for uint224;
uint public constant MINIMUM_LIQUIDITY = 10**3;
bytes4 private constant SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)')));
address public factory;
address public token0;
address public token1;
uint112 private reserve0; // uses single storage slot, accessible via getReserves
uint112 private reserve1; // uses single storage slot, accessible via getReserves
uint32 private blockTimestampLast; // uses single storage slot, accessible via getReserves
uint public price0CumulativeLast;
uint public price1CumulativeLast;
uint public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event
uint private unlocked = 1;
modifier lock() {
require(unlocked == 1, 'UniswapV2: LOCKED');
unlocked = 0;
_;
unlocked = 1;
}
function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) {
_reserve0 = reserve0;
_reserve1 = reserve1;
_blockTimestampLast = blockTimestampLast;
}
function _safeTransfer(address token, address to, uint value) private {
(bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value));
require(success && (data.length == 0 || abi.decode(data, (bool))), 'UniswapV2: TRANSFER_FAILED');
}
event Mint(address indexed sender, uint amount0, uint amount1);
event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
event Swap(
address indexed sender,
uint amount0In,
uint amount1In,
uint amount0Out,
uint amount1Out,
address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);
constructor() public {
factory = msg.sender;
}
// called once by the factory at time of deployment
function initialize(address _token0, address _token1) external {
require(msg.sender == factory, 'UniswapV2: FORBIDDEN'); // sufficient check
token0 = _token0;
token1 = _token1;
}
// update reserves and, on the first call per block, price accumulators
function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private {
require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW');
uint32 blockTimestamp = uint32(block.timestamp % 2**32);
uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired
if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {
// * never overflows, and + overflow is desired
price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed;
price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed;
}
reserve0 = uint112(balance0);
reserve1 = uint112(balance1);
blockTimestampLast = blockTimestamp;
emit Sync(reserve0, reserve1);
}
// if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k)
function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) {
address feeTo = IUniswapV2Factory(factory).feeTo();
feeOn = feeTo != address(0);
uint _kLast = kLast; // gas savings
if (feeOn) {
if (_kLast != 0) {
uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1));
uint rootKLast = Math.sqrt(_kLast);
if (rootK > rootKLast) {
uint numerator = totalSupply.mul(rootK.sub(rootKLast));
uint denominator = rootK.mul(5).add(rootKLast);
uint liquidity = numerator / denominator;
if (liquidity > 0) _mint(feeTo, liquidity);
}
}
} else if (_kLast != 0) {
kLast = 0;
}
}
// this low-level function should be called from a contract which performs important safety checks
function mint(address to) external lock returns (uint liquidity) {
(uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
uint balance0 = IERC20(token0).balanceOf(address(this));
uint balance1 = IERC20(token1).balanceOf(address(this));
uint amount0 = balance0.sub(_reserve0);
uint amount1 = balance1.sub(_reserve1);
bool feeOn = _mintFee(_reserve0, _reserve1);
uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
if (_totalSupply == 0) {
liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY);
_mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens
} else {
liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1);
}
require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED');
_mint(to, liquidity);
_update(balance0, balance1, _reserve0, _reserve1);
if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
emit Mint(msg.sender, amount0, amount1);
}
// this low-level function should be called from a contract which performs important safety checks
function burn(address to) external lock returns (uint amount0, uint amount1) {
(uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
address _token0 = token0; // gas savings
address _token1 = token1; // gas savings
uint balance0 = IERC20(_token0).balanceOf(address(this));
uint balance1 = IERC20(_token1).balanceOf(address(this));
uint liquidity = balanceOf[address(this)];
bool feeOn = _mintFee(_reserve0, _reserve1);
uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution
amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution
require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED');
_burn(address(this), liquidity);
_safeTransfer(_token0, to, amount0);
_safeTransfer(_token1, to, amount1);
balance0 = IERC20(_token0).balanceOf(address(this));
balance1 = IERC20(_token1).balanceOf(address(this));
_update(balance0, balance1, _reserve0, _reserve1);
if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
emit Burn(msg.sender, amount0, amount1, to);
}
// this low-level function should be called from a contract which performs important safety checks
function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock {
require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT');
(uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings
require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY');
uint balance0;
uint balance1;
{ // scope for _token{0,1}, avoids stack too deep errors
address _token0 = token0;
address _token1 = token1;
require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO');
if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens
if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens
if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data);
balance0 = IERC20(_token0).balanceOf(address(this));
balance1 = IERC20(_token1).balanceOf(address(this));
}
uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;
uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;
require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT');
{ // scope for reserve{0,1}Adjusted, avoids stack too deep errors
uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3));
uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3));
require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K');
}
_update(balance0, balance1, _reserve0, _reserve1);
emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
}
// force balances to match reserves
function skim(address to) external lock {
address _token0 = token0; // gas savings
address _token1 = token1; // gas savings
_safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0));
_safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1));
}
// force reserves to match balances
function sync() external lock {
_update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1);
}
}
contract UniswapV2Factory is IUniswapV2Factory {
address public feeTo;
address public feeToSetter;
mapping(address => mapping(address => address)) public getPair;
address[] public allPairs;
event PairCreated(address indexed token0, address indexed token1, address pair, uint);
constructor(address _feeToSetter) public {
feeToSetter = _feeToSetter;
}
function allPairsLength() external view returns (uint) {
return allPairs.length;
}
function createPair(address tokenA, address tokenB) external returns (address pair) {
require(tokenA != tokenB, 'UniswapV2: IDENTICAL_ADDRESSES');
(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
require(token0 != address(0), 'UniswapV2: ZERO_ADDRESS');
require(getPair[token0][token1] == address(0), 'UniswapV2: PAIR_EXISTS'); // single check is sufficient
bytes memory bytecode = type(UniswapV2Pair).creationCode;
bytes32 salt = keccak256(abi.encodePacked(token0, token1));
assembly {
pair := create2(0, add(bytecode, 32), mload(bytecode), salt)
}
IUniswapV2Pair(pair).initialize(token0, token1);
getPair[token0][token1] = pair;
getPair[token1][token0] = pair; // populate mapping in the reverse direction
allPairs.push(pair);
emit PairCreated(token0, token1, pair, allPairs.length);
}
function setFeeTo(address _feeTo) external {
require(msg.sender == feeToSetter, 'UniswapV2: FORBIDDEN');
feeTo = _feeTo;
}
function setFeeToSetter(address _feeToSetter) external {
require(msg.sender == feeToSetter, 'UniswapV2: FORBIDDEN');
feeToSetter = _feeToSetter;
}
}
// a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math)
library SafeMath {
function add(uint x, uint y) internal pure returns (uint z) {
require((z = x + y) >= x, 'ds-math-add-overflow');
}
function sub(uint x, uint y) internal pure returns (uint z) {
require((z = x - y) <= x, 'ds-math-sub-underflow');
}
function mul(uint x, uint y) internal pure returns (uint z) {
require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow');
}
}
// a library for performing various math operations
library Math {
function min(uint x, uint y) internal pure returns (uint z) {
z = x < y ? x : y;
}
// babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method)
function sqrt(uint y) internal pure returns (uint z) {
if (y > 3) {
z = y;
uint x = y / 2 + 1;
while (x < z) {
z = x;
x = (y / x + x) / 2;
}
} else if (y != 0) {
z = 1;
}
}
}
// a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format))
// range: [0, 2**112 - 1]
// resolution: 1 / 2**112
library UQ112x112 {
uint224 constant Q112 = 2**112;
// encode a uint112 as a UQ112x112
function encode(uint112 y) internal pure returns (uint224 z) {
z = uint224(y) * Q112; // never overflows
}
// divide a UQ112x112 by a uint112, returning a UQ112x112
function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) {
z = x / uint224(y);
}
}
// contracts/GLDToken.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;
import "https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.1.0/contracts/token/ERC20/ERC20.sol";
contract USDToken is ERC20 {
constructor(uint256 initialSupply) public ERC20("United States Dollar", "USD") {
_mint(msg.sender, initialSupply);
}
}
// Dependency file: contracts/interface/IERC20.sol
//SPDX-License-Identifier: MIT
// pragma solidity >=0.5.0;
interface IERC20 {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
function name() external view returns (string memory);
function symbol() external view returns (string memory);
function decimals() external view returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(address from, address to, uint value) external returns (bool);
}
// Dependency file: contracts/interface/ERC2917-Interface.sol
//SPDX-License-Identifier: MIT
// pragma solidity >=0.6.6;
// import 'contracts/interface/IERC20.sol';
interface IERC2917 is IERC20 {
/// @dev This emit when interests amount per block is changed by the owner of the contract.
/// It emits with the old interests amount and the new interests amount.
event InterestsPerBlockChanged (uint oldValue, uint newValue);
/// @dev This emit when a users' productivity has changed
/// It emits with the user's address and the the value after the change.
event ProductivityIncreased (address indexed user, uint value);
/// @dev This emit when a users' productivity has changed
/// It emits with the user's address and the the value after the change.
event ProductivityDecreased (address indexed user, uint value);
/// @dev Return the current contract's interests rate per block.
/// @return The amount of interests currently producing per each block.
function interestsPerBlock() external view returns (uint);
/// @notice Change the current contract's interests rate.
/// @dev Note the best practice will be restrict the gross product provider's contract address to call this.
/// @return The true/fase to notice that the value has successfully changed or not, when it succeed, it will emite the InterestsPerBlockChanged event.
function changeInterestsPerBlock(uint value) external returns (bool);
/// @notice It will get the productivity of given user.
/// @dev it will return 0 if user has no productivity proved in the contract.
/// @return user's productivity and overall productivity.
function getProductivity(address user) external view returns (uint, uint);
/// @notice increase a user's productivity.
/// @dev Note the best practice will be restrict the callee to prove of productivity's contract address.
/// @return true to confirm that the productivity added success.
function increaseProductivity(address user, uint value) external returns (bool);
/// @notice decrease a user's productivity.
/// @dev Note the best practice will be restrict the callee to prove of productivity's contract address.
/// @return true to confirm that the productivity removed success.
function decreaseProductivity(address user, uint value) external returns (bool);
/// @notice take() will return the interests that callee will get at current block height.
/// @dev it will always calculated by block.number, so it will change when block height changes.
/// @return amount of the interests that user are able to mint() at current block height.
function take() external view returns (uint);
/// @notice similar to take(), but with the block height joined to calculate return.
/// @dev for instance, it returns (_amount, _block), which means at block height _block, the callee has accumulated _amount of interests.
/// @return amount of interests and the block height.
function takeWithBlock() external view returns (uint, uint);
/// @notice mint the avaiable interests to callee.
/// @dev once it mint, the amount of interests will transfer to callee's address.
/// @return the amount of interests minted.
function mint() external returns (uint);
}
// Dependency file: contracts/libraries/Upgradable.sol
//SPDX-License-Identifier: MIT
// pragma solidity >=0.5.16;
contract UpgradableProduct {
address public impl;
event ImplChanged(address indexed _oldImpl, address indexed _newImpl);
constructor() public {
impl = msg.sender;
}
modifier requireImpl() {
require(msg.sender == impl, 'FORBIDDEN');
_;
}
function upgradeImpl(address _newImpl) public requireImpl {
require(_newImpl != address(0), 'INVALID_ADDRESS');
require(_newImpl != impl, 'NO_CHANGE');
address lastImpl = impl;
impl = _newImpl;
emit ImplChanged(lastImpl, _newImpl);
}
}
contract UpgradableGovernance {
address public governor;
event GovernorChanged(address indexed _oldGovernor, address indexed _newGovernor);
constructor() public {
governor = msg.sender;
}
modifier requireGovernor() {
require(msg.sender == governor, 'FORBIDDEN');
_;
}
function upgradeGovernance(address _newGovernor) public requireGovernor {
require(_newGovernor != address(0), 'INVALID_ADDRESS');
require(_newGovernor != governor, 'NO_CHANGE');
address lastGovernor = governor;
governor = _newGovernor;
emit GovernorChanged(lastGovernor, _newGovernor);
}
}
// Dependency file: contracts/libraries/SafeMath.sol
//SPDX-License-Identifier: MIT
// pragma solidity >=0.5.0;
// a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math)
library SafeMath {
function add(uint x, uint y) internal pure returns (uint z) {
require((z = x + y) >= x, 'ds-math-add-overflow');
}
function sub(uint x, uint y) internal pure returns (uint z) {
require((z = x - y) <= x, 'ds-math-sub-underflow');
}
function mul(uint x, uint y) internal pure returns (uint z) {
require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow');
}
}
// Root file: contracts/WasabiToken.sol
//SPDX-License-Identifier: MIT
pragma solidity >=0.6.6;
// import 'contracts/interface/ERC2917-Interface.sol';
// import 'contracts/libraries/Upgradable.sol';
// import 'contracts/libraries/SafeMath.sol';
/*
The Objective of ERC2917 Demo is to implement a decentralized staking mechanism, which calculates users' share
by accumulating productiviy * time. And calculates users revenue from anytime t0 to t1 by the formula below:
user_accumulated_productivity(time1) - user_accumulated_productivity(time0)
_____________________________________________________________________________ * (gross_product(t1) - gross_product(t0))
total_accumulated_productivity(time1) - total_accumulated_productivity(time0)
*/
contract WasabiToken is IERC2917, UpgradableProduct, UpgradableGovernance {
using SafeMath for uint;
uint public mintCumulation;
struct Production {
uint amount; // how many tokens could be produced on block basis
uint total; // total produced tokens
uint block; // last updated block number
}
Production internal grossProduct = Production(0, 0, 0);
struct Productivity {
uint product; // user's productivity
uint total; // total productivity
uint block; // record's block number
uint user; // accumulated products
uint global; // global accumulated products
uint gross; // global gross products
}
Productivity public global;
mapping(address => Productivity) public users;
uint private unlocked = 1;
modifier lock() {
require(unlocked == 1, 'Locked');
unlocked = 0;
_;
unlocked = 1;
}
// implementation of ERC20 interfaces.
string override public name;
string override public symbol;
uint8 override public decimals = 18;
uint override public totalSupply;
mapping(address => uint) override public balanceOf;
mapping(address => mapping(address => uint)) override public allowance;
function _transfer(address from, address to, uint value) private {
require(balanceOf[from] >= value, 'ERC20Token: INSUFFICIENT_BALANCE');
balanceOf[from] = balanceOf[from].sub(value);
balanceOf[to] = balanceOf[to].add(value);
if (to == address(0)) { // burn
totalSupply = totalSupply.sub(value);
}
emit Transfer(from, to, value);
}
function approve(address spender, uint value) external override returns (bool) {
allowance[msg.sender][spender] = value;
emit Approval(msg.sender, spender, value);
return true;
}
function transfer(address to, uint value) external override returns (bool) {
_transfer(msg.sender, to, value);
return true;
}
function transferFrom(address from, address to, uint value) external override returns (bool) {
require(allowance[from][msg.sender] >= value, 'ERC20Token: INSUFFICIENT_ALLOWANCE');
allowance[from][msg.sender] = allowance[from][msg.sender].sub(value);
_transfer(from, to, value);
return true;
}
// end of implementation of ERC20
// creation of the interests token.
constructor(uint _interestsRate) UpgradableProduct() UpgradableGovernance() public {
name = "Wasabi Swap";
symbol = "WASABI";
decimals = 18;
grossProduct.amount = _interestsRate;
grossProduct.block = block.number;
}
// When calling _computeBlockProduct() it calculates the area of productivity * time since last time and accumulate it.
function _computeBlockProduct() private view returns (uint) {
uint elapsed = block.number.sub(grossProduct.block);
return grossProduct.amount.mul(elapsed);
}
// compute productivity returns total productivity of a user.
function _computeProductivity(Productivity memory user) private view returns (uint) {
uint blocks = block.number.sub(user.block);
return user.total.mul(blocks);
}
// update users' productivity by value with boolean value indicating increase or decrease.
function _updateProductivity(Productivity storage user, uint value, bool increase) private {
user.product = user.product.add(_computeProductivity(user));
global.product = global.product.add(_computeProductivity(global));
require(global.product <= uint(-1), 'GLOBAL_PRODUCT_OVERFLOW');
user.block = block.number;
global.block = block.number;
if(increase) {
user.total = user.total.add(value);
global.total = global.total.add(value);
}
else {
user.total = user.total.sub(value);
global.total = global.total.sub(value);
}
}
// External function call
// This function adjust how many token will be produced by each block, eg:
// changeAmountPerBlock(100)
// will set the produce rate to 100/block.
function changeInterestsPerBlock(uint value) external override requireGovernor returns (bool) {
uint old = grossProduct.amount;
require(value != old, 'AMOUNT_PER_BLOCK_NO_CHANGE');
uint product = _computeBlockProduct();
grossProduct.total = grossProduct.total.add(product);
grossProduct.block = block.number;
grossProduct.amount = value;
require(grossProduct.total <= uint(-1), 'BLOCK_PRODUCT_OVERFLOW');
emit InterestsPerBlockChanged(old, value);
return true;
}
// External function call
// This function increase user's productivity and updates the global productivity.
// the users' actual share percentage will calculated by:
// Formula: user_productivity / global_productivity
function increaseProductivity(address user, uint value) external override requireImpl returns (bool) {
require(value > 0, 'PRODUCTIVITY_VALUE_MUST_BE_GREATER_THAN_ZERO');
Productivity storage product = users[user];
if (product.block == 0) {
product.gross = grossProduct.total.add(_computeBlockProduct());
product.global = global.product.add(_computeProductivity(global));
}
_updateProductivity(product, value, true);
emit ProductivityIncreased(user, value);
return true;
}
// External function call
// This function will decreases user's productivity by value, and updates the global productivity
// it will record which block this is happenning and accumulates the area of (productivity * time)
function decreaseProductivity(address user, uint value) external override requireImpl returns (bool) {
Productivity storage product = users[user];
require(value > 0 && product.total >= value, 'INSUFFICIENT_PRODUCTIVITY');
_updateProductivity(product, value, false);
emit ProductivityDecreased(user, value);
return true;
}
// External function call
// When user calls this function, it will calculate how many token will mint to user from his productivity * time
// Also it calculates global token supply from last time the user mint to this time.
function mint() external override lock returns (uint) {
(uint gp, uint userProduct, uint globalProduct, uint amount) = _computeUserProduct();
if(amount == 0)
return 0;
Productivity storage product = users[msg.sender];
product.gross = gp;
product.user = userProduct;
product.global = globalProduct;
balanceOf[msg.sender] = balanceOf[msg.sender].add(amount);
totalSupply = totalSupply.add(amount);
mintCumulation = mintCumulation.add(amount);
emit Transfer(address(0), msg.sender, amount);
return amount;
}
// Returns how many token he will be able to mint.
function _computeUserProduct() private view returns (uint gp, uint userProduct, uint globalProduct, uint amount) {
Productivity memory product = users[msg.sender];
gp = grossProduct.total.add(_computeBlockProduct());
userProduct = product.product.add(_computeProductivity(product));
globalProduct = global.product.add(_computeProductivity(global));
uint deltaBlockProduct = gp.sub(product.gross);
uint numerator = userProduct.sub(product.user);
uint denominator = globalProduct.sub(product.global);
if (denominator > 0) {
amount = deltaBlockProduct.mul(numerator) / denominator;
}
}
// Returns how many productivity a user has and global has.
function getProductivity(address user) external override view returns (uint, uint) {
return (users[user].total, global.total);
}
// Returns the current gorss product rate.
function interestsPerBlock() external override view returns (uint) {
return grossProduct.amount;
}
// Returns how much a user could earn.
function take() external override view returns (uint) {
(, , , uint amount) = _computeUserProduct();
return amount;
}
// Returns how much a user could earn plus the giving block number.
function takeWithBlock() external override view returns (uint, uint) {
(, , , uint amount) = _computeUserProduct();
return (amount, block.number);
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment