Created
February 24, 2021 20:34
-
-
Save pfackeldey/e3c5edfc3ea81bd1b82bc6e1fd1ab3af to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import nvidia_smi | |
class GPUStats(tf.keras.callbacks.Callback): | |
""" | |
Usage: | |
model.fit(..., callbacks=[GPUStats()]) | |
requires nvidia_smi package: | |
conda: conda install -c fastai nvidia-ml-py3 | |
pip : pip install nvidia-ml-py3 | |
""" | |
def __init__(self, idx=0): | |
nvidia_smi.nvmlInit() | |
self.handle = nvidia_smi.nvmlDeviceGetHandleByIndex(idx) | |
def on_x_end(self, x, logs=None): | |
self.mem = nvidia_smi.nvmlDeviceGetMemoryInfo(self.handle) | |
self.res = nvidia_smi.nvmlDeviceGetUtilizationRates(self.handle) | |
logs["GPU-Usage [%]"] = self.res.gpu | |
logs["GPU-vRAM [%]"] = 100 * self.mem.used / self.mem.total | |
logs["GPU-vRAM [MiB]"] = self.mem.used / (1024**2) | |
on_batch_end = on_x_end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment