Skip to content

Instantly share code, notes, and snippets.

@phadej

phadej/Cast.agda Secret

Last active April 22, 2024 12:10
Show Gist options
  • Save phadej/5cf29d6120cd27eb3330bc1eb8a5cfcc to your computer and use it in GitHub Desktop.
Save phadej/5cf29d6120cd27eb3330bc1eb8a5cfcc to your computer and use it in GitHub Desktop.
A way to model coercions
module Cast where
open import Data.Nat using (ℕ; zero; suc)
open import Data.Fin renaming (Fin to Var; zero to vz; suc to vs)
open import Data.Vec using (Vec; []; _∷_; lookup)
open import Data.Product using (_×_; _,_; proj₁; proj₂)
data Ty : Set where
arr : Ty → Ty → Ty
data Co (m : ℕ) : Set where
rfl : Ty → Co m
sym : Co m → Co m
arr : Co m → Co m → Co m
data Tm (n : ℕ) (m : ℕ) : Set where
var : Var n → Tm n m
app : Tm n m → Tm n m → Tm n m
lam : Tm (suc n) m → Tm n m
coe : Tm n m → Co m → Tm n m
data _⊩_⦂_≡_ {m} (Δ : Vec (Ty × Ty) m) : Co m → Ty → Ty → Set where
rflₜ : {A : Ty} →
-----------------
Δ ⊩ rfl A ⦂ A ≡ A
symₜ : {A B : Ty} {co : Co m} →
Δ ⊩ co ⦂ A ≡ B →
------------------
Δ ⊩ sym co ⦂ B ≡ A
arrₜ : {A B C D : Ty} {co₁ co₂ : Co m} →
Δ ⊩ co₁ ⦂ C ≡ A →
Δ ⊩ co₂ ⦂ D ≡ B →
-----------------------------------
Δ ⊩ arr co₁ co₂ ⦂ arr C D ≡ arr A B
data _⨟_⊢_⦂_ {n} {m} (Γ : Vec Ty n) (Δ : Vec (Ty × Ty) m) : (t : Tm n m) → Ty → Set where
varₜ : ∀ {x : Var n} →
--------------------------
Γ ⨟ Δ ⊢ var x ⦂ lookup Γ x
appₜ : ∀ {f t : Tm n m} {A B : Ty} →
Γ ⨟ Δ ⊢ f ⦂ arr A B →
Γ ⨟ Δ ⊢ t ⦂ A →
-----------------------------
Γ ⨟ Δ ⊢ app f t ⦂ B
lamₜ : ∀ {t : Tm (suc n) m} {A B : Ty} →
(A ∷ Γ) ⨟ Δ ⊢ t ⦂ B →
-----------------------------
Γ ⨟ Δ ⊢ lam t ⦂ arr A B
coeₜ : ∀ {t : Tm n m} {co : Co m} {A B : Ty} →
Γ ⨟ Δ ⊢ t ⦂ A →
Δ ⊩ co ⦂ A ≡ B →
---------------------
Γ ⨟ Δ ⊢ coe t co ⦂ B
postulate
subst : ∀ {n m} → Tm (suc n) m → Tm n m → Tm n m
weaken : ∀ {n m} → Tm n m → Tm (suc n) m
data step {n} {m} : Tm n m → Tm n m → Set where
appᵦ : ∀ {t : Tm (suc n) m} {s : Tm n m} →
step
(app (lam t) s)
(subst t s)
rflₖ : ∀ {A : Ty} {t : Tm n m} →
step
(coe t (rfl A))
t
arrₖ : {t : Tm n m} {co₁ co₂ : Co m} →
step
(coe t (arr co₁ co₂))
(lam (coe (app (weaken t) (coe (var vz) (sym co₁))) co₂))
postulate
weakenₜ : ∀ {n m} {Γ : Vec Ty n} {Δ : Vec (Ty × Ty) m} {t : Tm n m} (A B : Ty) →
Γ ⨟ Δ ⊢ t ⦂ A →
--------------------------
(B ∷ Γ) ⨟ Δ ⊢ weaken t ⦂ A
module Preservation-arrₖ {n m} {t : Tm n m} {co₁ co₂ : Co m} {Γ : Vec Ty n} {Δ : Vec (Ty × Ty) m} {A B : Ty} where
lemma
: Γ ⨟ Δ ⊢ coe t (arr co₁ co₂) ⦂ arr A B
→ Γ ⨟ Δ ⊢ lam (coe (app (weaken t) (coe (var vz) (sym co₁))) co₂) ⦂ arr A B
lemma (coeₜ tₜ (arrₜ {C = C} {D = D} co₁ₜ co₂ₜ)) =
lamₜ (coeₜ (appₜ (weakenₜ (arr C D) A tₜ) (coeₜ varₜ (symₜ co₁ₜ))) co₂ₜ)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment