Source code for the example 1 of http://philipperemy.github.io/anomaly-detection/
from __future__ import print_function | |
import os | |
import numpy as np | |
from keras.layers import RepeatVector | |
from keras.layers.core import Dropout | |
from keras.layers.recurrent import LSTM | |
from keras.models import Sequential | |
from keras.models import load_model | |
np.random.seed(123) | |
def prepare_sequences(x_train, window_length, random_indices): | |
full_sequence = x_train.flatten() | |
windows = [] | |
outliers = [] | |
for window_start in range(0, len(full_sequence) - window_length + 1): | |
window_end = window_start + window_length | |
window_range = range(window_start, window_end) | |
window = list(full_sequence[window_range]) | |
contain_outlier = len(set(window_range).intersection(set(random_indices))) > 0 | |
outliers.append(contain_outlier) | |
windows.append(window) | |
return np.expand_dims(np.array(windows), axis=2), outliers | |
def get_signal(size, outliers_size=0.01): | |
sig = np.expand_dims(np.random.normal(loc=0, scale=1, size=(size, 1)), axis=1) | |
if outliers_size < 1: # percentage. | |
outliers_size = int(size * outliers_size) | |
random_indices = np.random.choice(range(size), size=outliers_size, replace=False) | |
sig[random_indices] = np.random.randint(6, 9, 1)[0] | |
return sig, random_indices | |
def tp_fn_fp_tn(total, expected, actual): | |
tp = len(set(expected).intersection(set(actual))) | |
fn = len(set(expected) - set(actual)) | |
fp = len(set(actual) - set(expected)) | |
tn = len((total - set(expected)).intersection(total - set(actual))) | |
return tp, fn, fp, tn | |
def main(): | |
window_length = 10 | |
select_only_last_state = False | |
model_file = 'model.h5' | |
hidden_dim = 16 | |
# no outliers. | |
signal_train, _ = get_signal(100000, outliers_size=0) | |
x_train, _ = prepare_sequences(signal_train, window_length, []) | |
# 1 percent are outliers. | |
signal_test, random_indices = get_signal(100000, outliers_size=0.01) | |
x_test, contain_outliers = prepare_sequences(signal_test, window_length, random_indices) | |
outlier_indices = np.where(contain_outliers)[0] | |
if os.path.isfile(model_file): | |
m = load_model(model_file) | |
else: | |
m = Sequential() | |
if select_only_last_state: | |
m.add(LSTM(hidden_dim, input_shape=(window_length, 1), return_sequences=False)) | |
m.add(RepeatVector(window_length)) | |
else: | |
m.add(LSTM(hidden_dim, input_shape=(window_length, 1), return_sequences=True)) | |
m.add(Dropout(p=0.1)) | |
m.add(LSTM(1, return_sequences=True, activation='linear')) | |
m.compile(loss='mse', optimizer='adam') | |
m.fit(x_train, x_train, batch_size=64, nb_epoch=5, validation_data=(x_test, x_test)) | |
m.save(model_file) | |
pred_x_test = m.predict(x_test) | |
mae_of_predictions = np.squeeze(np.max(np.square(pred_x_test - x_test), axis=1)) | |
mae_threshold = np.mean(mae_of_predictions) + np.std(mae_of_predictions) # can use a running mean instead. | |
actual = np.where(mae_of_predictions > mae_threshold)[0] | |
tp, fn, fp, tn = tp_fn_fp_tn(set(range(len(pred_x_test))), outlier_indices, actual) | |
precision = float(tp) / (tp + fp) | |
hit_rate = float(tp) / (tp + fn) | |
accuracy = float(tp + tn) / (tp + tn + fp + fn) | |
print('precision = {}, hit_rate = {}, accuracy = {}'.format(precision, hit_rate, accuracy)) | |
if __name__ == '__main__': | |
main() |
This comment has been minimized.
This comment has been minimized.
How can i use running mean for Threshold |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
This comment has been minimized.
Hi, thank you for sharing this code. I've been trying to run the code but unfortunately I got this error.
ValueError: Error when checking input: expected input_1 to have 2 dimensions, but got array with shape (99991, 10, 1)