Last active
July 17, 2017 10:27
A minimal caffe app - mnist
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
CAFFEDIR=../caffe/cppbuild/linux-x86_64 | |
OPENCVDIR=../opencv/cppbuild/linux-x86_64 | |
INCDIR=${CAFFEDIR}/include | |
LINKOPTS=-L${CAFFEDIR}/lib -L${CAFFEDIR}/caffe-rc3/build/lib -lboost_system -lboost_thread -lgflags -lglog -lleveldb -llmdb -lopenblas -lprotobuf -lsnappy -lcaffe -lboost_filesystem -pthread -lpthread -L${OPENCVDIR}/lib -lopencv_core -lopencv_highgui -lopencv_imgcodecs -lopencv_imgproc | |
train: train.cpp | |
g++ -o train -DCPU_ONLY -I${INCDIR} train.cpp ${LINKOPTS} | |
run: train | |
LD_LIBRARY_PATH=${CAFFEDIR}/lib:${OPENCVDIR}/lib ./train | |
dataset: | |
/PATH/convert_mnist_data.bin /PATH-to-MNIST-DATA/train-images-idx3-ubyte /PATH-to-MNIST-DATA/train-labels-idx1-ubyte model/mnist_train_lmdb --backend=lmdb | |
/PATH/convert_mnist_data.bin /PATH-to-MNIST-DATA/t10k-images-idx3-ubyte /PATH-to-MNIST-DATA/t10k-labels-idx1-ubyte model/mnist_test_lmdb --backend=lmdb |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <gflags/gflags.h> | |
#include <glog/logging.h> | |
#include <cstring> | |
#include <map> | |
#include <string> | |
#include <vector> | |
#include "boost/algorithm/string.hpp" | |
#include "caffe/caffe.hpp" | |
#include "caffe/util/signal_handler.h" | |
using caffe::Blob; | |
using caffe::Caffe; | |
using caffe::Net; | |
using caffe::Layer; | |
using caffe::Solver; | |
using caffe::shared_ptr; | |
using caffe::string; | |
using caffe::Timer; | |
using caffe::vector; | |
using std::ostringstream; | |
// Train / Finetune a model. | |
int main() { | |
caffe::SolverParameter solver_param; | |
caffe::ReadSolverParamsFromTextFileOrDie("model/lenet_solver.prototxt", &solver_param); | |
solver_param.mutable_train_state()->set_level(0); | |
Caffe::set_mode(Caffe::CPU); | |
caffe::SignalHandler signal_handler( | |
caffe::SolverAction::STOP, | |
caffe::SolverAction::SNAPSHOT); | |
shared_ptr<caffe::Solver<float> > | |
solver(caffe::SolverRegistry<float>::CreateSolver(solver_param)); | |
solver->SetActionFunction(signal_handler.GetActionFunction()); | |
LOG(INFO) << "Starting Optimization"; | |
solver->Solve(); | |
LOG(INFO) << "Optimization Done."; | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment