Created
December 8, 2010 22:36
-
-
Save piscisaureus/734048 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Copyright 2006-2008 the V8 project authors. All rights reserved. | |
// Redistribution and use in source and binary forms, with or without | |
// modification, are permitted provided that the following conditions are | |
// met: | |
// | |
// * Redistributions of source code must retain the above copyright | |
// notice, this list of conditions and the following disclaimer. | |
// * Redistributions in binary form must reproduce the above | |
// copyright notice, this list of conditions and the following | |
// disclaimer in the documentation and/or other materials provided | |
// with the distribution. | |
// * Neither the name of Google Inc. nor the names of its | |
// contributors may be used to endorse or promote products derived | |
// from this software without specific prior written permission. | |
// | |
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
// Platform specific code for Cygwin goes here. For the POSIX comaptible parts | |
// the implementation is in platform-posix.cc. | |
#include <pthread.h> | |
#include <semaphore.h> | |
#include <signal.h> | |
#include <sys/time.h> | |
#include <sys/resource.h> | |
#include <sys/types.h> | |
#include <stdlib.h> | |
#include <sys/types.h> // mmap & munmap | |
#include <sys/mman.h> // mmap & munmap | |
#include <sys/stat.h> // open | |
#include <fcntl.h> // open | |
#include <unistd.h> // sysconf | |
#ifdef __GLIBC__ | |
#include <execinfo.h> // backtrace, backtrace_symbols | |
#endif // def __GLIBC__ | |
#include <strings.h> // index | |
#include <errno.h> | |
#include <stdarg.h> | |
#undef MAP_TYPE | |
#include "v8.h" | |
#include "platform.h" | |
#include "top.h" | |
#include "v8threads.h" | |
#include "vm-state-inl.h" | |
#include "win32-headers.h" | |
namespace v8 { | |
namespace internal { | |
// 0 is never a valid thread id on Linux since tids and pids share a | |
// name space and pid 0 is reserved (see man 2 kill). | |
static const pthread_t kNoThread = (pthread_t) 0; | |
double ceiling(double x) { | |
return ceil(x); | |
} | |
void OS::Setup() { | |
// Seed the random number generator. | |
// Convert the current time to a 64-bit integer first, before converting it | |
// to an unsigned. Going directly can cause an overflow and the seed to be | |
// set to all ones. The seed will be identical for different instances that | |
// call this setup code within the same millisecond. | |
uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis()); | |
srandom(static_cast<unsigned int>(seed)); | |
} | |
uint64_t OS::CpuFeaturesImpliedByPlatform() { | |
return 0; | |
} | |
int OS::ActivationFrameAlignment() { | |
// With gcc 4.4 the tree vectorization optimizer can generate code | |
// that requires 16 byte alignment such as movdqa on x86. | |
return 16; | |
} | |
void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) { | |
__asm__ __volatile__("" : : : "memory"); | |
// An x86 store acts as a release barrier. | |
*ptr = value; | |
} | |
const char* OS::LocalTimezone(double time) { | |
if (isnan(time)) return ""; | |
time_t tv = static_cast<time_t>(floor(time/msPerSecond)); | |
struct tm* t = localtime(&tv); | |
if (NULL == t) return ""; | |
return tzname[0]; // The location of the timezone string on Cywin. | |
} | |
double OS::LocalTimeOffset() { | |
time_t tv = time(NULL); | |
struct tm* t = localtime(&tv); | |
struct tm* gmt = gmtime(&tv); | |
int dayoff = t->tm_wday - gmt->tm_wday; | |
if (dayoff > 3) | |
dayoff -= 7; | |
else if (dayoff < -3) | |
dayoff += 7; | |
int secoff = dayoff * 86400 | |
+ (t->tm_hour - gmt->tm_hour) * 3600 | |
+ (t->tm_min - gmt->tm_min ) * 60 | |
+ (t->tm_sec - gmt->tm_sec ); | |
// gmtoff now includes any daylight savings offset, so subtract it. | |
if (t->tm_isdst > 0) | |
secoff -= 3600; | |
return static_cast<double>(secoff * msPerSecond); | |
} | |
// We keep the lowest and highest addresses mapped as a quick way of | |
// determining that pointers are outside the heap (used mostly in assertions | |
// and verification). The estimate is conservative, ie, not all addresses in | |
// 'allocated' space are actually allocated to our heap. The range is | |
// [lowest, highest), inclusive on the low and and exclusive on the high end. | |
static void* lowest_ever_allocated = reinterpret_cast<void*>(-1); | |
static void* highest_ever_allocated = reinterpret_cast<void*>(0); | |
static void UpdateAllocatedSpaceLimits(void* address, int size) { | |
lowest_ever_allocated = Min(lowest_ever_allocated, address); | |
highest_ever_allocated = | |
Max(highest_ever_allocated, | |
reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size)); | |
} | |
bool OS::IsOutsideAllocatedSpace(void* address) { | |
return address < lowest_ever_allocated || address >= highest_ever_allocated; | |
} | |
size_t OS::AllocateAlignment() { | |
return sysconf(_SC_PAGESIZE); | |
} | |
void* OS::Allocate(const size_t requested, | |
size_t* allocated, | |
bool is_executable) { | |
const size_t msize = RoundUp(requested, sysconf(_SC_PAGESIZE)); | |
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); | |
void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
if (mbase == MAP_FAILED) { | |
LOG(StringEvent("OS::Allocate", "mmap failed")); | |
return NULL; | |
} | |
*allocated = msize; | |
UpdateAllocatedSpaceLimits(mbase, msize); | |
return mbase; | |
} | |
void OS::Free(void* address, const size_t size) { | |
// TODO(1240712): munmap has a return value which is ignored here. | |
int result = munmap(address, size); | |
USE(result); | |
ASSERT(result == 0); | |
} | |
#ifdef ENABLE_HEAP_PROTECTION | |
void OS::Protect(void* address, size_t size) { | |
// TODO(1240712): mprotect has a return value which is ignored here. | |
mprotect(address, size, PROT_READ); | |
} | |
void OS::Unprotect(void* address, size_t size, bool is_executable) { | |
// TODO(1240712): mprotect has a return value which is ignored here. | |
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); | |
mprotect(address, size, prot); | |
} | |
#endif | |
void OS::Sleep(int milliseconds) { | |
unsigned int ms = static_cast<unsigned int>(milliseconds); | |
usleep(1000 * ms); | |
} | |
void OS::Abort() { | |
// Redirect to std abort to signal abnormal program termination. | |
abort(); | |
} | |
void OS::DebugBreak() { | |
// TODO(lrn): Introduce processor define for runtime system (!= V8_ARCH_x, | |
// which is the architecture of generated code). | |
asm("int $3"); | |
} | |
class PosixMemoryMappedFile : public OS::MemoryMappedFile { | |
public: | |
PosixMemoryMappedFile(FILE* file, void* memory, int size) | |
: file_(file), memory_(memory), size_(size) { } | |
virtual ~PosixMemoryMappedFile(); | |
virtual void* memory() { return memory_; } | |
private: | |
FILE* file_; | |
void* memory_; | |
int size_; | |
}; | |
OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size, | |
void* initial) { | |
FILE* file = fopen(name, "w+"); | |
if (file == NULL) return NULL; | |
int result = fwrite(initial, size, 1, file); | |
if (result < 1) { | |
fclose(file); | |
return NULL; | |
} | |
void* memory = | |
mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0); | |
return new PosixMemoryMappedFile(file, memory, size); | |
} | |
PosixMemoryMappedFile::~PosixMemoryMappedFile() { | |
if (memory_) munmap(memory_, size_); | |
fclose(file_); | |
} | |
void OS::LogSharedLibraryAddresses() { | |
#ifdef ENABLE_LOGGING_AND_PROFILING | |
// This function assumes that the layout of the file is as follows: | |
// hex_start_addr-hex_end_addr rwxp <unused data> [binary_file_name] | |
// If we encounter an unexpected situation we abort scanning further entries. | |
FILE* fp = fopen("/proc/self/maps", "r"); | |
if (fp == NULL) return; | |
// Allocate enough room to be able to store a full file name. | |
const int kLibNameLen = FILENAME_MAX + 1; | |
char* lib_name = reinterpret_cast<char*>(malloc(kLibNameLen)); | |
// This loop will terminate once the scanning hits an EOF. | |
while (true) { | |
uintptr_t start, end; | |
char attr_r, attr_w, attr_x, attr_p; | |
// Parse the addresses and permission bits at the beginning of the line. | |
if (fscanf(fp, "%" V8PRIxPTR "-%" V8PRIxPTR, &start, &end) != 2) break; | |
if (fscanf(fp, " %c%c%c%c", &attr_r, &attr_w, &attr_x, &attr_p) != 4) break; | |
int c; | |
if (attr_r == 'r' && attr_w != 'w' && attr_x == 'x') { | |
// Found a read-only executable entry. Skip characters until we reach | |
// the beginning of the filename or the end of the line. | |
do { | |
c = getc(fp); | |
} while ((c != EOF) && (c != '\n') && (c != '/')); | |
if (c == EOF) break; // EOF: Was unexpected, just exit. | |
// Process the filename if found. | |
if (c == '/') { | |
ungetc(c, fp); // Push the '/' back into the stream to be read below. | |
// Read to the end of the line. Exit if the read fails. | |
if (fgets(lib_name, kLibNameLen, fp) == NULL) break; | |
// Drop the newline character read by fgets. We do not need to check | |
// for a zero-length string because we know that we at least read the | |
// '/' character. | |
lib_name[strlen(lib_name) - 1] = '\0'; | |
} else { | |
// No library name found, just record the raw address range. | |
snprintf(lib_name, kLibNameLen, | |
"%08" V8PRIxPTR "-%08" V8PRIxPTR, start, end); | |
} | |
LOG(SharedLibraryEvent(lib_name, start, end)); | |
} else { | |
// Entry not describing executable data. Skip to end of line to setup | |
// reading the next entry. | |
do { | |
c = getc(fp); | |
} while ((c != EOF) && (c != '\n')); | |
if (c == EOF) break; | |
} | |
} | |
free(lib_name); | |
fclose(fp); | |
#endif | |
} | |
static const char kGCFakeMmap[] = "/tmp/__v8_gc__"; | |
void OS::SignalCodeMovingGC() { | |
#ifdef ENABLE_LOGGING_AND_PROFILING | |
// Support for ll_prof.py. | |
// | |
// The Linux profiler built into the kernel logs all mmap's with | |
// PROT_EXEC so that analysis tools can properly attribute ticks. We | |
// do a mmap with a name known by ll_prof.py and immediately munmap | |
// it. This injects a GC marker into the stream of events generated | |
// by the kernel and allows us to synchronize V8 code log and the | |
// kernel log. | |
int size = sysconf(_SC_PAGESIZE); | |
FILE* f = fopen(kGCFakeMmap, "w+"); | |
void* addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, | |
fileno(f), 0); | |
ASSERT(addr != MAP_FAILED); | |
munmap(addr, size); | |
fclose(f); | |
#endif | |
} | |
int OS::StackWalk(Vector<OS::StackFrame> frames) { | |
// backtrace is a glibc extension. | |
#ifdef __GLIBC__ | |
int frames_size = frames.length(); | |
ScopedVector<void*> addresses(frames_size); | |
int frames_count = backtrace(addresses.start(), frames_size); | |
char** symbols = backtrace_symbols(addresses.start(), frames_count); | |
if (symbols == NULL) { | |
return kStackWalkError; | |
} | |
for (int i = 0; i < frames_count; i++) { | |
frames[i].address = addresses[i]; | |
// Format a text representation of the frame based on the information | |
// available. | |
SNPrintF(MutableCStrVector(frames[i].text, kStackWalkMaxTextLen), | |
"%s", | |
symbols[i]); | |
// Make sure line termination is in place. | |
frames[i].text[kStackWalkMaxTextLen - 1] = '\0'; | |
} | |
free(symbols); | |
return frames_count; | |
#else // ndef __GLIBC__ | |
return 0; | |
#endif // ndef __GLIBC__ | |
} | |
// Constants used for mmap. | |
static const int kMmapFd = -1; | |
static const int kMmapFdOffset = 0; | |
VirtualMemory::VirtualMemory(size_t size) { | |
address_ = mmap(NULL, size, PROT_NONE, | |
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, | |
kMmapFd, kMmapFdOffset); | |
size_ = size; | |
} | |
VirtualMemory::~VirtualMemory() { | |
if (IsReserved()) { | |
if (0 == munmap(address(), size())) address_ = MAP_FAILED; | |
} | |
} | |
bool VirtualMemory::IsReserved() { | |
return address_ != MAP_FAILED; | |
} | |
bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) { | |
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); | |
if (mprotect(address, size, prot) != 0) { | |
return false; | |
} | |
UpdateAllocatedSpaceLimits(address, size); | |
return true; | |
} | |
bool VirtualMemory::Uncommit(void* address, size_t size) { | |
if (mprotect(address, size, PROT_NONE) != 0) { | |
return false; | |
} | |
return true; | |
} | |
class ThreadHandle::PlatformData : public Malloced { | |
public: | |
explicit PlatformData(ThreadHandle::Kind kind) { | |
Initialize(kind); | |
} | |
void Initialize(ThreadHandle::Kind kind) { | |
switch (kind) { | |
case ThreadHandle::SELF: thread_ = pthread_self(); break; | |
case ThreadHandle::INVALID: thread_ = kNoThread; break; | |
} | |
} | |
pthread_t thread_; // Thread handle for pthread. | |
}; | |
ThreadHandle::ThreadHandle(Kind kind) { | |
data_ = new PlatformData(kind); | |
} | |
void ThreadHandle::Initialize(ThreadHandle::Kind kind) { | |
data_->Initialize(kind); | |
} | |
ThreadHandle::~ThreadHandle() { | |
delete data_; | |
} | |
bool ThreadHandle::IsSelf() const { | |
return pthread_equal(data_->thread_, pthread_self()); | |
} | |
bool ThreadHandle::IsValid() const { | |
return data_->thread_ != kNoThread; | |
} | |
Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) { | |
} | |
Thread::~Thread() { | |
} | |
static void* ThreadEntry(void* arg) { | |
Thread* thread = reinterpret_cast<Thread*>(arg); | |
// This is also initialized by the first argument to pthread_create() but we | |
// don't know which thread will run first (the original thread or the new | |
// one) so we initialize it here too. | |
thread->thread_handle_data()->thread_ = pthread_self(); | |
ASSERT(thread->IsValid()); | |
thread->Run(); | |
return NULL; | |
} | |
void Thread::Start() { | |
pthread_create(&thread_handle_data()->thread_, NULL, ThreadEntry, this); | |
ASSERT(IsValid()); | |
} | |
void Thread::Join() { | |
pthread_join(thread_handle_data()->thread_, NULL); | |
} | |
Thread::LocalStorageKey Thread::CreateThreadLocalKey() { | |
pthread_key_t key; | |
int result = pthread_key_create(&key, NULL); | |
USE(result); | |
ASSERT(result == 0); | |
return static_cast<LocalStorageKey>(key); | |
} | |
void Thread::DeleteThreadLocalKey(LocalStorageKey key) { | |
pthread_key_t pthread_key = static_cast<pthread_key_t>(key); | |
int result = pthread_key_delete(pthread_key); | |
USE(result); | |
ASSERT(result == 0); | |
} | |
void* Thread::GetThreadLocal(LocalStorageKey key) { | |
pthread_key_t pthread_key = static_cast<pthread_key_t>(key); | |
return pthread_getspecific(pthread_key); | |
} | |
void Thread::SetThreadLocal(LocalStorageKey key, void* value) { | |
pthread_key_t pthread_key = static_cast<pthread_key_t>(key); | |
pthread_setspecific(pthread_key, value); | |
} | |
void Thread::YieldCPU() { | |
sched_yield(); | |
} | |
class CygwinMutex : public Mutex { | |
public: | |
CygwinMutex() { | |
pthread_mutexattr_t attrs; | |
memset(&attrs, 0, sizeof(attrs)); | |
int result = pthread_mutexattr_init(&attrs); | |
ASSERT(result == 0); | |
result = pthread_mutexattr_settype(&attrs, PTHREAD_MUTEX_RECURSIVE); | |
ASSERT(result == 0); | |
result = pthread_mutex_init(&mutex_, &attrs); | |
ASSERT(result == 0); | |
} | |
virtual ~CygwinMutex() { pthread_mutex_destroy(&mutex_); } | |
virtual int Lock() { | |
int result = pthread_mutex_lock(&mutex_); | |
return result; | |
} | |
virtual int Unlock() { | |
int result = pthread_mutex_unlock(&mutex_); | |
return result; | |
} | |
virtual bool TryLock() { | |
int result = pthread_mutex_trylock(&mutex_); | |
// Return false if the lock is busy and locking failed. | |
if (result == EBUSY) { | |
return false; | |
} | |
ASSERT(result == 0); // Verify no other errors. | |
return true; | |
} | |
private: | |
pthread_mutex_t mutex_; // Pthread mutex for POSIX platforms. | |
}; | |
Mutex* OS::CreateMutex() { | |
return new CygwinMutex(); | |
} | |
class CygwinSemaphore : public Semaphore { | |
public: | |
explicit CygwinSemaphore(int count) { sem_init(&sem_, 0, count); } | |
virtual ~CygwinSemaphore() { sem_destroy(&sem_); } | |
virtual void Wait(); | |
virtual bool Wait(int timeout); | |
virtual void Signal() { sem_post(&sem_); } | |
private: | |
sem_t sem_; | |
}; | |
void CygwinSemaphore::Wait() { | |
while (true) { | |
int result = sem_wait(&sem_); | |
if (result == 0) return; // Successfully got semaphore. | |
CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup. | |
} | |
} | |
#ifndef TIMEVAL_TO_TIMESPEC | |
#define TIMEVAL_TO_TIMESPEC(tv, ts) do { \ | |
(ts)->tv_sec = (tv)->tv_sec; \ | |
(ts)->tv_nsec = (tv)->tv_usec * 1000; \ | |
} while (false) | |
#endif | |
bool CygwinSemaphore::Wait(int timeout) { | |
const long kOneSecondMicros = 1000000; // NOLINT | |
// Split timeout into second and nanosecond parts. | |
struct timeval delta; | |
delta.tv_usec = timeout % kOneSecondMicros; | |
delta.tv_sec = timeout / kOneSecondMicros; | |
struct timeval current_time; | |
// Get the current time. | |
if (gettimeofday(¤t_time, NULL) == -1) { | |
return false; | |
} | |
// Calculate time for end of timeout. | |
struct timeval end_time; | |
timeradd(¤t_time, &delta, &end_time); | |
struct timespec ts; | |
TIMEVAL_TO_TIMESPEC(&end_time, &ts); | |
// Wait for semaphore signalled or timeout. | |
while (true) { | |
int result = sem_timedwait(&sem_, &ts); | |
if (result == 0) return true; // Successfully got semaphore. | |
if (result > 0) { | |
// For glibc prior to 2.3.4 sem_timedwait returns the error instead of -1. | |
errno = result; | |
result = -1; | |
} | |
if (result == -1 && errno == ETIMEDOUT) return false; // Timeout. | |
CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup. | |
} | |
} | |
Semaphore* OS::CreateSemaphore(int count) { | |
return new CygwinSemaphore(count); | |
} | |
#ifdef ENABLE_LOGGING_AND_PROFILING | |
static Sampler* active_sampler_ = NULL; | |
static pthread_t vm_tid_ = NULL; | |
typedef CONTEXT mcontext_t; | |
typedef struct __stack { | |
void *ss_sp; | |
size_t ss_size; | |
int ss_flags; | |
} stack_t; | |
struct sigcontext { | |
uint32_t trap_no; | |
uint32_t error_code; | |
uint32_t oldmask; | |
uint32_t gregs[16]; | |
uint32_t arm_cpsr; | |
uint32_t fault_address; | |
}; | |
typedef uint32_t __sigset_t; | |
typedef struct ucontext { | |
uint32_t uc_flags; | |
struct ucontext* uc_link; | |
stack_t uc_stack; | |
mcontext_t uc_mcontext; | |
__sigset_t uc_sigmask; | |
} ucontext_t; | |
static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) { | |
USE(info); | |
if (signal != SIGPROF) return; | |
if (active_sampler_ == NULL || !active_sampler_->IsActive()) return; | |
if (vm_tid_ != pthread_self()) return; | |
TickSample sample_obj; | |
TickSample* sample = CpuProfiler::TickSampleEvent(); | |
if (sample == NULL) sample = &sample_obj; | |
// Extracting the sample from the context is extremely machine dependent. | |
ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context); | |
mcontext_t& mcontext = ucontext->uc_mcontext; | |
sample->state = Top::current_vm_state(); | |
#if V8_HOST_ARCH_IA32 | |
sample->pc = reinterpret_cast<Address>(mcontext.Eip); | |
sample->sp = reinterpret_cast<Address>(mcontext.Esp); | |
sample->fp = reinterpret_cast<Address>(mcontext.Ebp); | |
#elif V8_HOST_ARCH_X64 | |
UNSUPPORTED(); | |
#endif | |
active_sampler_->SampleStack(sample); | |
active_sampler_->Tick(sample); | |
} | |
class Sampler::PlatformData : public Malloced { | |
public: | |
enum SleepInterval { | |
FULL_INTERVAL, | |
HALF_INTERVAL | |
}; | |
explicit PlatformData(Sampler* sampler) | |
: sampler_(sampler), | |
signal_handler_installed_(false), | |
vm_tgid_(getpid()), | |
signal_sender_launched_(false) { | |
} | |
void SignalSender() { | |
while (sampler_->IsActive()) { | |
if (rate_limiter_.SuspendIfNecessary()) continue; | |
if (sampler_->IsProfiling() && RuntimeProfiler::IsEnabled()) { | |
SendProfilingSignal(); | |
Sleep(HALF_INTERVAL); | |
RuntimeProfiler::NotifyTick(); | |
Sleep(HALF_INTERVAL); | |
} else { | |
if (sampler_->IsProfiling()) SendProfilingSignal(); | |
if (RuntimeProfiler::IsEnabled()) RuntimeProfiler::NotifyTick(); | |
Sleep(FULL_INTERVAL); | |
} | |
} | |
} | |
void SendProfilingSignal() { | |
// Cygwin has no tgkill(2) nor tkill(2) | |
pthread_kill(vm_tid_, SIGPROF); | |
} | |
void Sleep(SleepInterval full_or_half) { | |
// Convert ms to us and subtract 100 us to compensate delays | |
// occuring during signal delivery. | |
useconds_t interval = sampler_->interval_ * 1000 - 100; | |
if (full_or_half == HALF_INTERVAL) interval /= 2; | |
int result = usleep(interval); | |
#ifdef DEBUG | |
if (result != 0 && errno != EINTR) { | |
fprintf(stderr, | |
"SignalSender usleep error; interval = %u, errno = %d\n", | |
interval, | |
errno); | |
ASSERT(result == 0 || errno == EINTR); | |
} | |
#endif | |
USE(result); | |
} | |
Sampler* sampler_; | |
bool signal_handler_installed_; | |
struct sigaction old_signal_handler_; | |
int vm_tgid_; | |
bool signal_sender_launched_; | |
pthread_t signal_sender_thread_; | |
RuntimeProfilerRateLimiter rate_limiter_; | |
}; | |
static void* SenderEntry(void* arg) { | |
Sampler::PlatformData* data = | |
reinterpret_cast<Sampler::PlatformData*>(arg); | |
data->SignalSender(); | |
return 0; | |
} | |
Sampler::Sampler(int interval) | |
: interval_(interval), | |
profiling_(false), | |
active_(false), | |
samples_taken_(0) { | |
data_ = new PlatformData(this); | |
} | |
Sampler::~Sampler() { | |
ASSERT(!data_->signal_sender_launched_); | |
delete data_; | |
} | |
void Sampler::Start() { | |
// There can only be one active sampler at the time on POSIX | |
// platforms. | |
ASSERT(!IsActive()); | |
vm_tid_ = pthread_self(); | |
// Request profiling signals. | |
struct sigaction sa; | |
sa.sa_sigaction = ProfilerSignalHandler; | |
sigemptyset(&sa.sa_mask); | |
sa.sa_flags = SA_RESTART | SA_SIGINFO; | |
if (sigaction(SIGPROF, &sa, &data_->old_signal_handler_) != 0) return; | |
data_->signal_handler_installed_ = true; | |
// Start a thread that sends SIGPROF signal to VM thread. | |
// Sending the signal ourselves instead of relying on itimer provides | |
// much better accuracy. | |
SetActive(true); | |
if (pthread_create( | |
&data_->signal_sender_thread_, NULL, SenderEntry, data_) == 0) { | |
data_->signal_sender_launched_ = true; | |
} | |
// Set this sampler as the active sampler. | |
active_sampler_ = this; | |
} | |
void Sampler::Stop() { | |
SetActive(false); | |
// Wait for signal sender termination (it will exit after setting | |
// active_ to false). | |
if (data_->signal_sender_launched_) { | |
Top::WakeUpRuntimeProfilerThreadBeforeShutdown(); | |
pthread_join(data_->signal_sender_thread_, NULL); | |
data_->signal_sender_launched_ = false; | |
} | |
// Restore old signal handler | |
if (data_->signal_handler_installed_) { | |
sigaction(SIGPROF, &data_->old_signal_handler_, 0); | |
data_->signal_handler_installed_ = false; | |
} | |
// This sampler is no longer the active sampler. | |
active_sampler_ = NULL; | |
} | |
#endif // ENABLE_LOGGING_AND_PROFILING | |
} } // namespace v8::internal |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment