/matma.tex Secret
Created
November 28, 2020 20:32
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
\documentclass[12pt]{article} | |
\usepackage[MeX, nomathsymbols]{polski} | |
\usepackage[utf8]{inputenc} | |
\usepackage{graphicx} | |
\usepackage{amsmath} %pakiet matematyczny | |
\usepackage{amssymb} %pakiet dodatkowych symboli | |
\begin{document} | |
\texttt{Wyrażenie \#1} | |
$$\lim_{n\to \infty} \frac{n+1}{n}=1$$ | |
$$\lim_{n\to\infty} \frac{(-1)^n}{n}=0$$ | |
$$\lim_{n\to\infty} \frac{2n+5}{n}=2$$ | |
$$\lim_{n\to\infty} (2n-1)=\infty$$ | |
$$\lim_{n\to\infty} (-n^2+1)=-\infty$$ | |
\texttt{Wyrażenie \#2} | |
$$ | |
\begin{cases} | |
|z| = |z-4i| \\ | |
\frac{\pi}{4} \leq \operatorname{Arg}z < \frac{\pi}{2} | |
\end{cases} | |
$$ | |
$$ | |
\begin{cases} | |
|z+4|=|z+2-2i| \\ | |
|z| \leq 2 | |
\end{cases} | |
$$ | |
$$ | |
\begin{cases} | |
|z-1-i|<\sqrt{2} \\ | |
\operatorname{Arg}(z-1-i)<\frac{\pi}{2} | |
\end{cases} | |
$$ | |
\texttt{Wyrażenie \#3} | |
$$ | |
\left\{ | |
\begin{array}{rcrcr} | |
x & + & 5y& = & 2\\ | |
-3x & + & 6y & = & 15 | |
\end{array} | |
\right. | |
$$ | |
$$ | |
\left\{ | |
\begin{array}{rcrcrcr} | |
x& - & y & - & z & = & 1 \\ | |
3x& + & 4y & - & 2z & = & -1 \\ | |
3x& - & 2y & - & 2z & = & 1 \\ | |
\end{array} | |
\right. | |
$$ | |
$$ | |
\left\{ | |
\begin{array}{rcrcrcrcr} | |
& & y & - & 3z & +& 4v&= & 0 \\ | |
x& & & - & 2z & &&= & 0 \\ | |
3x& + & 2y & & & - & 5v&= & 2 \\ | |
4x& & & - & 5z & &&= & 0 \\ | |
\end{array} | |
\right. | |
$$ | |
\texttt{Wyrażenie \#4} | |
$$ | |
\left[ | |
\begin{array}{ccc} | |
1 & 0 & 0 \\ | |
0 & 3 & 0 \\ | |
0 & 0 & 1 \\ | |
\end{array} | |
\right] | |
\cdot | |
\left[ | |
\begin{array}{ccc} | |
1 & 2 & 3 \\ | |
3 & 1 & 2 \\ | |
5 & 1 & 3 \\ | |
\end{array} | |
\right] | |
$$ | |
$$ | |
\left[ | |
\begin{array}{ccc} | |
0 & 1 & 0 \\ | |
1 & 0 & 0 \\ | |
0 & 0 & 1 \\ | |
\end{array} | |
\right] | |
\cdot | |
\left[ | |
\begin{array}{cc} | |
11 & -2 \\ | |
6 & -14 \\ | |
-21& 30 \\ | |
\end{array} | |
\right] | |
$$ | |
$$ | |
\left[ | |
\begin{array}{ccc} | |
1 & 0 & 0 \\ | |
0 & 1 & 0 \\ | |
1 & 0 & 1 \\ | |
\end{array} | |
\right] | |
\cdot | |
\left[ | |
\begin{array}{ccc} | |
1 & 1 & 3 \\ | |
2 & 1 &4 \\ | |
1 & 3 & 0 \\ | |
\end{array} | |
\right] | |
$$ | |
\texttt{Wyrażenie \#5} | |
$$ | |
\left\{ | |
\begin{array}{rcrcrcrcr} | |
x&+ & 2y & + & 3z & +& t&= & 1 \\ | |
2x& + & 4y & - & z & +&2t&= & 2 \\ | |
3x& + & 6y & + & 10z & + & 3t&= & 3 \\ | |
x& + & y & + & z & +&t&= & 0 \\ | |
\end{array} | |
\right. | |
$$ | |
$$ | |
\left\{ | |
\begin{array}{rcrcrcrcrcr} | |
x&- & y & + & z & - &2s&+& t&= & 0 \\ | |
3x& + & 4y & - & z & +&s&+&3t&= & 1 \\ | |
x& - & 8y & + & 5z & - &9s&+& t&= & -1 \\ | |
\end{array} | |
\right. | |
$$ | |
\texttt{Wyrażenie \#6} | |
$$ | |
\left| | |
\begin{array}{rr} | |
-3 & 2 \\ | |
8 & -5 | |
\end{array} | |
\right| | |
$$ | |
$$ | |
\left| | |
\begin{array}{rr} | |
\sin \alpha & \cos \alpha \\ | |
\sin \beta & \cos \beta | |
\end{array} | |
\right| | |
$$ | |
$$ | |
\left| | |
\begin{array}{ccc} | |
1& 1& 1 \\ | |
1 & 2& 3\\ | |
1& 3 & 6 | |
\end{array} | |
\right| | |
$$ | |
$$ | |
\left| | |
\begin{array}{ccc} | |
1& i& 1+i \\ | |
-i & 1& 0\\ | |
1-i& 0 & 1 | |
\end{array} | |
\right| | |
$$ | |
\texttt{Wyrażenie \#7} | |
$$ | |
B= | |
\left[ | |
\begin{array}{c|cc|ccc} | |
1& 0 & 0 & 1 & 1& 1\\ | |
\hline | |
0 & 2 & 2 & 1 & 2 & 3\\ | |
0 & 2 & 2 & 4 & 5 & 6\\ | |
\hline | |
0& 0 & 0 & 3 & 3& 1\\ | |
0& 0 & 0 & 3 & 1& 3\\ | |
0& 0 & 0 & 1 & 3& 3\\ | |
\end{array} | |
\right] | |
$$ | |
\texttt{Wyrażenie \#8} | |
$$ | |
\int_1^{\infty} \frac{dx}{(x+2)^2} | |
$$ | |
$$ | |
\int_{-\infty}^0 \frac{dx}{x^2+4} | |
$$ | |
$$ | |
\int_{-\infty}^{\infty} x^2e^{-x^3} dx | |
$$ | |
$$ | |
\int_1^{\infty} \frac{dx}{\sqrt[3]{3x+5}} | |
$$ | |
$$ | |
\int_{-1}^0 \frac{dx}{\sqrt[5]{x^2}} | |
$$ | |
$$ | |
\int_2^3 \frac{dx}{x^2-3x} | |
$$ | |
\texttt{Wyrażenie \#9} | |
$$\log_{\sqrt{5}} 5\sqrt[3]{5}$$ | |
$$\log_{\sqrt[3]{3}} 27$$ | |
$$\log_2 8\sqrt{2}$$ | |
$$\log_{\frac{1}{3}}81\sqrt{3}$$ | |
$$3^{2+\log_3 4}$$ | |
$$2^{5-\frac{1}{3}\log _2 27}$$ | |
$$\sqrt{10^{2+\frac{1}{2}\log 16}}$$ | |
\texttt{Wyrażenie \#10} | |
$$ | |
\int \frac{x^2 \, dx}{\sqrt{4-x^2}} | |
$$ | |
$$ | |
\int \frac{x^3 \, dx}{\sqrt{25+x^2}} | |
$$ | |
$$ | |
\int \sqrt{x^2-36}\, dx | |
$$ | |
$$ | |
\int \sqrt{3+x^2}\, dx | |
$$ | |
\texttt{Wyrażenie \#11} | |
$$ | |
\lim_{n\to\infty} | |
\left( | |
\sqrt{n+6\sqrt{n}+1}-\sqrt{n} | |
\right) | |
$$ | |
$$ | |
\lim_{n\to\infty} | |
\frac | |
{1+\frac{1}{2}+\frac{1}{2^2}+\ldots+\frac{1}{2^n}} | |
{1+\frac{1}{3}+\frac{1}{3^2}+\ldots+\frac{1}{3^n}} | |
$$ | |
\texttt{Wyrażenie \#12} | |
$$ | |
d_n=\cos \frac{\pi}{2n} | |
$$ | |
$$ | |
e_n=\sqrt[n]{5^n+6^n} | |
$$ | |
$$ | |
f_n=\frac{n!(2n)!}{(3n)!} | |
$$ | |
\texttt{Wyrażenie \#13} | |
$$ | |
\lim_{n\to\infty} \left(1+\frac{6}{n}\right)^n | |
$$ | |
$$ | |
\lim_{n\to\infty} \left(\frac{n}{n+1}\right)^{n+1} | |
$$ | |
$$ | |
\lim_{n\to\infty} \left(\frac{n+3}{n}\right)^{n+3} | |
$$ | |
$$ | |
\lim_{n\to\infty} \left(1-\frac{2}{n}\right)^{-n} | |
$$ | |
\texttt{Wyrażenie \#14} | |
$$ | |
\sum_{n=1}^{\infty} (-1)^{n+1}(2n-1) | |
$$ | |
$$ | |
\sum_{n=1}^{\infty} \sin\frac{2\pi}{3^n}\cos\frac{4\pi}{3^n} | |
$$ | |
$$ | |
\sum_{n=2}^{\infty} (\left(\sqrt[n]{n} - \sqrt[n+1]{n+1} \right) | |
$$ | |
\end{document} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment