Skip to content

Instantly share code, notes, and snippets.

@pjazdzewski1990
Last active August 29, 2015 14:21
Show Gist options
  • Save pjazdzewski1990/50b81c26647f9757a599 to your computer and use it in GitHub Desktop.
Save pjazdzewski1990/50b81c26647f9757a599 to your computer and use it in GitHub Desktop.
object ClassicRunner {
def run() = {
val input = Array(
Array( 0.0, 0.0 ),
Array( 1.0, 0.0 ),
Array( 0.0, 1.0 ),
Array( 1.0, 1.0 )
)
val ideal = Array(
Array(0.0),
Array(1.0),
Array(1.0),
Array(0.0)
)
// create a neural network, without using a factory
val network = new BasicNetwork();
network.addLayer(new BasicLayer(null,true,2));
network.addLayer(new BasicLayer(new ActivationSigmoid(),true,3));
network.addLayer(new BasicLayer(new ActivationSigmoid(),false,1));
network.getStructure().finalizeStructure();
network.reset();
// create training data
val trainingSet = new BasicMLDataSet(input, ideal);
// train the neural network
val train = new ResilientPropagation(network, trainingSet);
var epoch = 1;
do {
train.iteration();
println("Epoch #" + epoch + " Error:" + train.getError());
epoch = epoch+1;
} while(train.getError() > 0.01);
train.finishTraining();
// test the neural network
println("Neural Network Results for Classic:");
for { pair <- trainingSet.getData() } {
val output = network.compute(pair.getInput());
println(pair.getInput().getData(0) + "," + pair.getInput().getData(1)
+ ", actual=" + output.getData(0) + ",ideal=" + pair.getIdeal().getData(0));
}
Encog.getInstance().shutdown();
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment