Skip to content

Instantly share code, notes, and snippets.

@plugnburn
Created March 28, 2019 09:39
Show Gist options
  • Star 1 You must be signed in to star a gist
  • Fork 2 You must be signed in to fork a gist
  • Save plugnburn/4b34c6bd4d5264eabdbf82d2f46df2fc to your computer and use it in GitHub Desktop.
Save plugnburn/4b34c6bd4d5264eabdbf82d2f46df2fc to your computer and use it in GitHub Desktop.
Huawei modem unlock/flash code generator for algos v1/v2/v201 (Python 2 version)
#!/usr/bin/python
# -*- coding: utf-8 -*-
import os
import hashlib
import argparse
import binascii
import struct
def encrypt_v1(imei, key):
"""
The V1 unlock system
This system uses hardcoded keys.
"""
salt = hashlib.md5(key).hexdigest()[8:24]
digest = hashlib.md5((imei + salt).lower()).digest()
code = 0
for i in range(0, 4):
code += (ord(digest[i]) ^ ord(digest[4 + i]) ^
ord(digest[8 + i]) ^ ord(digest[12 + i])) << (3 - i) * 8
return str((code & 0x1ffffff) | 0x2000000)
def encrypt_v2_1(imei, version):
# Magic bytes from somewhere
key_2 = [
0x01966A9, 0x021058F, 0x02AEDA9, 0x037CE91, 0x0488C9F, 0x05E507D,
0x07A9BE5, 0x09F644B, 0x0CF35A1, 0x10D5F55, 0x15E2F25, 0x1C73D6B,
0x24FCFDD, 0x3015B47, 0x3E829E9, 0x5143685
]
key_201 = [
0x06E9C2A, 0x3CA2B3C, 0x01080DC, 0x30855EE, 0x3D3283A, 0x2F4F85A,
0x1F8808E, 0x3147D10, 0x34BBBB5, 0x29EEADD, 0x2318616, 0x50F3ADC,
0x0D11F38, 0x2123BD2, 0x4276C86, 0x355CAAD
]
if version == 201:
magic_bytes = key_201
else:
magic_bytes = key_2
csum = 0
for i, digit in enumerate(imei):
csum += ((ord(digit) * magic_bytes[i]))
# Truncate to an unsigned long
csum &= 0xffffffff
# Extract bit integers from the checksum, get mod 10
zvar = []
for i in range(8):
zvar.append(((csum & (0xf << (i * 4))) >> (i * 4)) % 10)
# Add 1 to not have leading zero
if zvar[0] == 0:
zvar[0] = 1
# Join the array of integers
return ''.join([str(i) for i in zvar])
def encrypt_v2_2(imei, version):
"""This algorithim is two CRC32 implementation."""
def custom_crc32(imei):
"""
Non standard CRC32 used in v201 and v3
"""
crc_table_v201 = [
0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x76DC419,
0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0, 0x10DA7A5A,
0xFBD44C65, 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2,
0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A,
0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1,
0xA6BC5767, 0x3FB506DD, 0x48B2364B, 0xD80D2BDA, 0xAF0A1B4C,
0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF,
0x90BF1D91, 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE,
0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, 0x136C9856,
0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4,
0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B,
0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9,
0x45DF5C75, 0xDCD60DCF, 0xABD13D59, 0x26D930AC, 0x51DE003A,
0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599,
0x706AF48F, 0xE963A535, 0x9E6495A3, 0x0EDB8832, 0x79DCB8A4,
0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07,
0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3,
0xB8BDA50F, 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924,
0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D, 0x76DC4190,
0x4969474D, 0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66,
0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9,
0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605,
0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615,
0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01,
0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED,
0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950,
0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3,
0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1, 0xF00F9344,
0x4669BE79, 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236,
0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F, 0xC5BA3BBE,
0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1,
0x18B74777, 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C,
0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45, 0xA00AE278,
0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31,
0x2CD99E8B, 0x5BDEAE1D, 0x9B64C2B0, 0xEC63F226, 0x756AA39C,
0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713,
0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5,
0xAA0A4C5F, 0xDD0D7CC9, 0x5005713C, 0x270241AA, 0xBE0B1010,
0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F,
0x9FBFE4A5, 0xE8B8D433, 0x7807C9A2, 0x0F00F934, 0x9609A88E,
0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17,
0xCDD70693, 0x54DE5729, 0x23D967BF, 0xB3667A2E, 0xC4614AB8,
0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B,
0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD, 0xEDB88320, 0x9ABFB3B6,
0x73DC1683, 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8,
0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5,
0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB,
0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B,
0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242,
0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7,
0x2D02EF8D,
]
csum = 0xffffffff
for i, digit in enumerate(imei):
csum = crc_table_v201[(csum & 0xff) ^ ord(digit)] ^ (csum >> 8)
# Truncate to unsigned int
csum &= 0xffffffff
return csum
if version == 201:
# Version 201/3 uses a custom CRC32 block
crc32 = custom_crc32(imei)
# Represent unsigned crc32 as signed int
crc32 = struct.unpack('>i', struct.pack('>I', ~crc32 & 0xffffffff))[0]
crc32 = abs(crc32)
else:
# Version 2 uses a standard CRC32 block
crc32 = abs(binascii.crc32(imei)) & 0xffffffff
if crc32 == 0:
return '99999999'
else:
# Reverse the crc32 number, and pad on left with '9's
result = list(str(crc32)[-8:])
# Replace a leading zero with nine
if result[0] == '0':
result[0] = '9'
# Join result and pad left with 9's
return ''.join(result).rjust(8, '9')
def encrypt_v2_3(imei, version):
"""
MD5 digest algorithim
"""
digest = hashlib.md5(imei).digest()
if version == 201:
digest_bytes = list(digest[5:5+8])
else:
digest_bytes = list(digest[0:8])
# Replace first digit if it begins with zero
first_digit = ord(digest_bytes[0]) % 10
if (first_digit) == 0:
digest_bytes[0] = '5'
else:
digest_bytes[0] = str(first_digit)
# Use suitable digits or base 10 bytes to get a single decimal digit
result = []
for byte in digest_bytes:
# Byte is already a single digit character, don't mod
if (byte >= '0') and (byte <= '9'):
result.append(byte)
else:
result.append(ord(byte) % 10)
return ''.join([str(i) for i in result])
def encrypt_v2_4(imei, version):
"""
MD5 with version specific salt
"""
def md5_hash(imei, key):
salt = hashlib.md5(key).digest()
return hashlib.md5(imei + salt).digest()
if version == 201:
digest = md5_hash(imei, key="dfkdkfllekkodk")
else:
digest = md5_hash(imei, key="hwideadatacard")
code = 0
for i in range(0, 4):
digit = ((ord(digest[i]) ^ ord(digest[i+4]) ^
ord(digest[i+8]) ^ ord(digest[i+12])))
code = (code << 8) | (digit & 0xff)
return str((code & 0x1ffffff) | 0x2000000)
def encrypt_v2_5(imei, version):
"""
Substitution cipher based on IMEI
"""
pw_table = "5739146280098765432112345678905\000"
result = []
imei_str = imei + 'Z'
for i in range(0, 8):
digit = ((ord(imei_str[i]) ^ ord(imei_str[i+8])) & 0xff)
result.append(int(pw_table[(digit >> 4) + (digit & 0x0f)]))
# Dont start with zero, set first digit to the offset of the first
# non-zero digit.
if result[0] == 0:
for i, digit in enumerate(result):
if digit != 0:
break
result[0] = i
return ''.join([str(i) for i in result])
def encrypt_v2_6(imei, version):
"""
SHA1 digest of IMEI
"""
digest = hashlib.sha1(imei).digest()
# Chunk hash as unsigned integers, unpack four bytes as an unsigned int
int_array = []
for i in range(0, len(digest), 4):
int_array.append(str(struct.unpack(">I", digest[i:i+4])[0]))
if version == 2:
result = int_array[0] + int_array[1]
elif version == 5:
result = int_array[1] + int_array[4]
elif version == 6:
result = int_array[2] + int_array[3]
# Pad the result with zeros to make 8 digit code
return result[0:8].ljust(8, '0')
def encrypt_v2_7(imei, version):
"""
Keyed cipher and MD5 digest
"""
cb_2 = [
0x01, 0x01, 0x02, 0x03, 0x05, 0x08, 0x0D, 0x15, 0x22, 0x37, 0x59, 0x90
]
cb_201 = [
0x0B, 0x0D, 0x11, 0x13, 0x17, 0x1D, 0x1F, 0x25, 0x29, 0x2B, 0x3B, 0x61
]
if version == 201:
key = cb_201
else:
key = cb_2
result = []
for i, digit in enumerate(imei):
digit = ord(digit)
if (i % 3) == 0:
result.append(((digit << 6) | (digit >> 2)) & 0xff)
elif (i % 3) == 1:
result.append(((digit << 5) | (digit >> 3)) & 0xff)
else:
result.append(((digit >> 4) | (digit << 4)) & 0xff)
hsum = 0
for i in range(0, 7):
hsum += result[14-i] + (result[i] << 8)
hsum += result[8]
# Pad buffer with 0's
buf128 = result + ([0] * (128 - len(result)))
# TODO: Understand what this chunk of code does:
# Appears to do divison by 6.
r8 = 0
for i in range(15, 0x80):
r6 = i
r3 = i >> 31
lr = 0x2AAAAAAB
cx = 0x2AAAAAAB * i
r1 = cx >> 32
cx = lr * r8
lr = cx >> 32
r0 = r8 >> 31
r2 = r0
r5 = (r1 >> 1) - r3
r12 = r5 << 4
r0 = (lr >> 1) - r0
r2 = (lr >> 1) - r2
r1 = r0 << 4
r12 = r12 - (r5 << 2)
r3 = r2 << 4
lr = r6 - r12
r1 = r1 - (r0 << 2)
r7 = r5 + lr
r3 = r3 - (r2 << 2)
r1 = r8 - r1
r2 = r5 + r1
r3 = r8 - r3
r12 = r12 - 0x18
if r7 > 0xb:
r7 = r7 - 0xc
r3 += r5
if r5 > 1:
r3 = r2 + r12
r0 = hsum
r1 = r6
if r8 == 0:
r4 = buf128[r3]
r0 = r0 % r1
r1 = key[r7]
r4 = r4 & r1
r12 = buf128[r0]
r3 = buf128[r0+1]
r4 |= r12
else:
r1 = r6
r0 = hsum
r4 = buf128[r3]
r0 = r0 % r1
r1 = r8
r5 = buf128[r0]
r0 = hsum
r0 = r0 % r1
r3 = buf128[r0]
r2 = key[r7]
r4 = r4 & r2
r4 = r4 | r5
r3 = ~r3
r3 = r3 | r4
r3 &= 0xff
buf128[i] = r3
r8 += 1
byte_array = ''.join([chr(b) for b in buf128])
csum = 0
for i in range(0, 7):
csum += (ord(imei[i+1]) | (ord(imei[i]) << 8))
csum += ord(imei[14])
digest = hashlib.md5(byte_array).digest()
# Pick bytes from the digest which are integers
result = []
for byte in digest:
if (byte >= '0') and (byte <= '9'):
result.append(byte)
if len(result) > 7:
break
def int_from_bytestream(byte_stream):
"""Convert a 4 byte chunk to an integer"""
return struct.unpack("<I", byte_stream[0:4])[0]
# Extract an integer from the hash
offset = (csum & 3) << 2
extra_num = str(int_from_bytestream(digest[offset:]))
# Cycle 1
if len(result) < 8:
# Don't have enough numbers, read more digits from the end
# of extra_number until we have 8 digits.
while len(result) < 8:
extra_num, last_digit = extra_num[:-1], extra_num[-1]
result.append(last_digit)
# If still nor enough digits, pick a new integer from digest
if not extra_num:
offset = (3 - (csum & 3)) << 2
extra_num = str(int_from_bytestream(digest[offset:]))
# Replace any leading zeros
if result[0] == '0':
if csum != 0:
offset = 1
else:
offset = 0
# Add one to digit to ensure non zero
result[0] = str((ord(digest[offset]) & 7) + 1)
return ''.join([str(i) for i in result])
def proc_index(imei, version):
"""
Determine `index` for the IMEI
The index determines which of the 7 algorithims should be usedbytes
for the unlock code generation.
"""
csum = 0
for i, digit in enumerate(imei, 1):
ch = ord(digit)
if version == 201:
csum += (ch + i) * ch * (ch + 313)
else:
csum += (ch+i) * i
cx = (-0x6db6db6d * csum) >> 32
c1 = ((cx + csum) >> 2) - (csum >> 31)
return csum - ((c1 << 3) - c1)
def calc_2(imei, version):
"""
Select the correct crypto algorithim based on the IMEI
"""
# Algorithim set for v2
encryption_algo_v2 = {
0: (encrypt_v2_1, 2),
1: (encrypt_v2_2, 2),
2: (encrypt_v2_3, 2),
3: (encrypt_v2_4, 2),
4: (encrypt_v2_5, None),
5: (encrypt_v2_6, 2),
6: (encrypt_v2_7, 2),
}
# Algorithim set for v201 / v3
encryption_algo_v201 = {
0: (encrypt_v2_1, 201),
1: (encrypt_v2_2, 201),
2: (encrypt_v2_3, 201),
3: (encrypt_v2_4, 201),
4: (encrypt_v2_6, 5),
5: (encrypt_v2_6, 6),
6: (encrypt_v2_7, 201),
}
index = proc_index(imei, version)
if version == 2:
algorithim, algo_version = encryption_algo_v2[index]
elif version == 201 or version == 3:
algorithim, algo_version = encryption_algo_v201[index]
return algorithim(imei, algo_version)
def unlock(imei, version):
"""
Public unlock function
Choose the correct unlock algorithim based on the version
"""
if version == 1:
return encrypt_v1(imei, 'hwe620datacard')
elif version == 2:
# Version v2
return calc_2(imei, 2)
elif version == 201 or version == 3:
# Version v201/v3
return calc_2(imei, 201)
elif version == 'flash':
return encrypt_v1(imei, 'e630upgrade')
def run_tests():
"""
Run tests
"""
# These are test case which check some tricky cases.
assert(encrypt_v2_1('166794546749343', 201) == '31572464')
assert(encrypt_v2_2('867010022091625', 2) == '89740701')
assert(encrypt_v2_2('867010022093346', 2) == '90496577')
assert(encrypt_v2_2('867010022091336', 201) == '43479313')
assert(encrypt_v2_2('486043736169958', 201) == '20766653')
assert(encrypt_v2_2('152782107774300', 201) == '99353390')
assert(encrypt_v2_3('867010022091626', 2) == '55760904')
assert(encrypt_v2_3('867010022091545', 2) == '77395563')
assert(encrypt_v2_3('867010022091566', 201) == '98820346')
assert(encrypt_v2_3('133887909865624', 201) == '13553393')
assert(encrypt_v2_4('867010022091677', 2) == '50284150')
assert(encrypt_v2_4('867010022091677', 201) == '48425064')
assert(encrypt_v2_5('867010022091661', 2) == '16672676')
assert(encrypt_v2_5('867010022091698', 2) == '16672086')
assert(encrypt_v2_6('867010022091692', 2) == '16678430')
assert(encrypt_v2_6('867010022091696', 5) == '26958384')
assert(encrypt_v2_6('867010022091697', 6) == '11406485')
assert(encrypt_v2_7('867010022093344', 2) == '41232318')
assert(encrypt_v2_7('234242342432305', 2) == '68014899')
assert(encrypt_v2_7('221724677371250', 2) == '92023179')
assert(encrypt_v2_7('867010022093350', 201) == '13122759')
assert(proc_index('667010022091624', 201) == 2)
assert(proc_index('867010022091624', 201) == 3)
assert(proc_index('867010022091624', 2) == 0)
assert(encrypt_v2_7('221724677371250', 2) == '92023179')
# Try load extra test cases from file
failed = False
for test_type in [1, 2, 3]:
try:
test_file = os.path.join("tests", "test-{}.txt".format(test_type))
for test_line in open(test_file, 'r'):
imei, expected = test_line.strip().split(' ')
calculated = unlock(imei, test_type)
if calculated != expected:
print("Error: IMEI: %s Calculated: %s Expected: %s" %
(imei, calculated, expected))
failed = True
except OSError:
print("Could not open test cases in '{}'.".format(test_file))
if failed:
print("Tests failed")
else:
print("All tests passed!")
def main():
parser = argparse.ArgumentParser(
description="Generate Huawei device unlock codes.")
parser.add_argument("imei", type=str, help="The device IMEI number")
parser.add_argument('--test', action="store_true",
help="Run the test cases")
args = parser.parse_args()
if args.test:
return run_tests()
if len(args.imei) != 15 or not args.imei.isdigit():
print("Not a valid IMEI")
else:
# Looks like a valid IMEI, calculate codes.
imei = args.imei
print('IMEI: {}'.format(imei))
print('Unlock (V1): {}'.format(unlock(imei, 1)))
print('Unlock (V2): {}'.format(unlock(imei, 2)))
print('Unlock (V3/201): {}'.format(unlock(imei, 3)))
print('Flash: {}'.format(unlock(imei, 'flash')))
if __name__ == '__main__':
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment