Skip to content

Instantly share code, notes, and snippets.

View pnlph's full-sized avatar
🐢
ἑρμηνεύω

herminie pnlph

🐢
ἑρμηνεύω
  • Leipzig
  • 05:22 (UTC +02:00)
View GitHub Profile
module test where
open import Data.Nat
open import Data.Product
foo : ℕ → ℕ
foo = λ where
zero → 1
(suc x) → 0
module 4648̣ where
open import Agda.Builtin.List using (List ; _∷_)
a∷as:ListA : ∀ {A : Set} → ∀ {a : A} → ∀ {as : List A} → List A
a∷as:ListA {X} {x} {xs} = x ∷ xs
variable
I : Set
module issue.#3135 where
-- latex \sqw
postulate
A : Set
□ : Set
_□ : Set → Set
⟨_⟩ : Set → Set
--G : Set
module compilers where
module 1960s where
open import Agda.Builtin.Nat using (_+_ ; _*_)
open import Agda.Builtin.Equality using (_≡_ ; refl)
_ : 5 + 6 ≡ 11
_ = refl
module 1950s where
open import Agda.Builtin.Nat using (Nat)
\prec Precedes. Unicode U+227A: ≺
\preceq Precedes or equals to. Unicode U+227C: ≼
\precsim Precedes or equivalent to. Unicode U+227E: ≾
\precnsim Precedes and not equivalent to. Unicode U+22E8: ⋨
{-# OPTIONS --type-in-type #-}
{-
Computer Aided Formal Reasoning (G53CFR, G54CFR)
Thorsten Altenkirch
Lecture 20: Russell's paradox
In this lecture we show that it is inconsistent to have
Set:Set. Luckily, Agda is aware of this and indeed
Set=Set₀ : Set₁ : Set₂ : ...
module sort where
-- Polymorphic types
-- Not the framework of pure type systems!
-- Reference https://jesper.sikanda.be/posts/agdas-new-sorts.html
------------------------------------------------------------
-- id₁ : id-sort₁ : Setω
-- with Level, Setω
------------------------------------------------------------
_≤_ _≥_ : ℕ → ℕ → 𝓤₀ ̇
0 ≤ y = 𝟙
succ x ≤ 0 = 𝟘
succ x ≤ succ y = x ≤ y
_≤'_ : ℕ → ℕ → 𝓤₀ ̇
_≤'_ = ℕ-iteration (ℕ → 𝓤₀ ̇ ) (λ y → 𝟙) (λ f → ℕ-recursion (𝓤₀ ̇ ) 𝟘 (λ y P → f y))
x ≥ y = y ≤ x
ℕ-induction : (A : ℕ → 𝓤 ̇ ) → A 0 → ((n : ℕ) → A n → A (succ n)) → (n : ℕ) → A n
ℕ-induction A a₀ f = h where h : (n : ℕ) → A n
h 0 = a₀
h (succ n) = f n (h n)
ℕ-recursion : (X : 𝓤 ̇ ) → X → (ℕ → X → X) → ℕ → X
ℕ-recursion X = ℕ-induction (λ _ → X)
ℕ-iteration : (X : 𝓤 ̇ ) → X → (X → X) → ℕ → X
ℕ-iteration X x f = ℕ-recursion X x (λ _ x → f x)
module reflection-issue where
open import Data.Nat using (zero)
open import Data.Vec using (_∷_)
open import Agda.Builtin.Equality using (_≡_; refl)
open import Agda.Builtin.Reflection using (con)
open import Data.List using ([])
_ : quoteTerm zero ≡ con (quote zero) []
_ = refl