Last active
January 14, 2022 19:30
-
-
Save pozitron57/34a7b2ba52743722047271689d8b1850 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
def cos(x): | |
return round( np.cos( np.radians(x) ), 10 ) | |
def sin(x): | |
return round( np.sin( np.radians(x) ), 10 ) | |
def asin(x): | |
return np.degrees( np.arcsin(x) ) | |
# Plot setup {{{ | |
from matplotlib import pyplot as plt | |
from matplotlib import rc, rcParams | |
rcParams['font.size'] = 16. | |
rcParams['text.usetex'] = True | |
rcParams['font.sans-serif'] = ['Computer Modern'] | |
rc('text.latex', preamble=r'\usepackage[T2A]{fontenc} \usepackage[utf8]{inputenc}') | |
rc('axes', linewidth=1.2) | |
rc('xtick.major', size=4, width=1.1) | |
rc('ytick.major', size=4, width=1.1) | |
fig, ax = plt.subplots() | |
fig.subplots_adjust(left=.15, bottom=.15, right=.95, top=.95) | |
#}}} | |
def sqrt(x): return x**(1./2.) | |
v = 20 | |
g = 10 | |
t = np.linspace(0,5,100) | |
angles = [0,20,40,50,60,asin(sqrt(8/9)),78,83,90] | |
for a in angles: | |
x = v * cos(a) * t | |
y = v * sin(a) * t - g*t**2 / 2 | |
r = sqrt(x**2 + y**2) | |
ax.plot(t,r) | |
ax.grid() | |
ax.set_xlabel('$t$ [\\textrm{с}]') | |
ax.set_ylabel('$r$ [\\textrm{м}]') | |
ax.set_ylim([0,80]) | |
#plt.savefig('r_t.png', bbox_inches='tight') | |
plt.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
# Triginometry {{{ | |
def cos(x): | |
return round( np.cos( np.radians(x) ), 10 ) | |
def sin(x): | |
return round( np.sin( np.radians(x) ), 10 ) | |
def sins(x): | |
return round( np.sin( np.radians(x) )**2, 10 ) | |
def asin(x): | |
return np.degrees( np.arcsin(x) ) | |
#}}} | |
def sqrt(x): return x**(1./2.) | |
# Plot setup {{{ | |
from matplotlib import pyplot as plt | |
from matplotlib import rc, rcParams | |
rcParams['font.size'] = 16. | |
rcParams['text.usetex'] = True | |
rcParams['font.sans-serif'] = ['Computer Modern'] | |
rc('text.latex', preamble=r'\usepackage[T2A]{fontenc} \usepackage[utf8]{inputenc} \usepackage{bm}') | |
rc('axes', linewidth=1.2) | |
rc('xtick.major', size=4, width=1.1) | |
rc('ytick.major', size=4, width=1.1) | |
fig, ax = plt.subplots() | |
fig.subplots_adjust(left=.15, bottom=.15, right=.95, top=.95) | |
#}}} | |
# Initial parameters (SI units) | |
x0 = 0 | |
y0 = 0 | |
v0 = 20 | |
g = 10 | |
#a = asin(sqrt(8/9)) # 70.53 deg | |
t = np.linspace(0,5,100) | |
angles = np.linspace(90, 55, 300) | |
for a in angles: | |
# Kinematics equations | |
x = v0*cos(a)*t | |
y = v0*sin(a)*t - g*t**2/2 | |
vx = v0*cos(a) | |
vy = v0*sin(a) - g*t | |
if a >= asin(sqrt(8/9)) and a < 88.3: | |
# First time when r is perpendicular to v | |
t1 = (3/2*v0*g*sin(a) - sqrt(9/4*v0**2*g**2*sins(a) - 2*g**2*v0**2)) / g**2 | |
x1 = v0*cos(a)*t1 | |
y1 = v0*sin(a)*t1 - g*t1**2/2 | |
v1y = v0*sin(a) - g*t1 | |
# Second time when r is perpendicular to v | |
t2 = (3/2*v0*g*sin(a) + sqrt(9/4*v0**2*g**2*sins(a) - 2*g**2*v0**2)) / g**2 | |
x2 = v0*cos(a)*t2 | |
y2 = v0*sin(a)*t2 - g*t2**2/2 | |
v2y = v0*sin(a) - g*t2 | |
# v1 | |
ax.arrow(x1, y1, vx, v1y, | |
width=0.3, | |
head_length=1, | |
ec='None', | |
fc='#FF5555', | |
zorder=4, | |
length_includes_head=True) | |
ax.text((x1+vx)*1.06, y1+v1y, '$\\bm{v_1}$', c='#FF5555', ha='left') | |
# v2 | |
ax.arrow(x2, y2, vx, v2y, | |
width=0.3, | |
head_length=1, | |
ec='None', | |
fc='#FF5555', | |
zorder=5, | |
length_includes_head=True) | |
ax.text((x2+vx)*1.05, y2+v2y, '$\\bm{v_2}$', c='#FF5555', ha='left') | |
# r1 | |
ax.arrow(x0, y0, x1, y1, | |
width=0.3, | |
head_length=1.5, | |
ec='None', | |
fc='#3333BB', | |
length_includes_head=True) | |
ax.text((x0+x1)/2.2 , (y0+y1)/2, '$\\bm{r_1}$', c='#3333BB', ha='right') | |
# r2 | |
ax.arrow(x0, y0, x2, y2, | |
width=0.3, | |
head_length=1.5, | |
ec='None', | |
fc='#3333BB', | |
length_includes_head=True) | |
ax.text((x0+x2)/1.95 , (y0+y2)/2, '$\\bm{r_2}$', c='#3333BB', ha='left', va='top') | |
# Final plot setup and trajectory | |
#ax.text(30.9, 16, '$\\alpha={}^\\circ$'.format(int(a))) | |
ax.plot([], [], ' ', label='$v_0={}~$'.format(v0)+'\\textrm{м/с}') | |
ax.plot([], [], ' ', label='$\\alpha={}^\circ$'.format( "{:.1f}".format(a)) ) | |
ax.legend(markerscale=0, handletextpad=-2.0) | |
ax.grid() | |
ax.plot(x, y, ls='-', c='#888888', lw=1.4) | |
plt.axis('equal') | |
ax.set_axisbelow(True) | |
ax.set_xlim([-0,45]) | |
ax.set_ylim([-20,25]) | |
ax.set_xlabel('$x$ [\\textrm{м}]') | |
ax.set_ylabel('$y$ [\\textrm{м}]') | |
# Save the figure | |
plt.savefig('rpvt_a/' + str(a)+'.png', bbox_inches='tight') | |
plt.cla() | |
# Use imagemagick to convert *.png to *.gif: | |
# convert -delay 0.01 -loop 0 -reverse *.png r.gif |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
# Triginometry {{{ | |
def cos(x): | |
return round( np.cos( np.radians(x) ), 10 ) | |
def sin(x): | |
return round( np.sin( np.radians(x) ), 10 ) | |
def sins(x): | |
return round( np.sin( np.radians(x) )**2, 10 ) | |
def asin(x): | |
return np.degrees( np.arcsin(x) ) | |
#}}} | |
def sqrt(x): return x**(1./2.) | |
# Plot setup {{{ | |
from matplotlib import pyplot as plt | |
from matplotlib import rc, rcParams | |
rcParams['font.size'] = 16. | |
rcParams['text.usetex'] = True | |
rcParams['font.sans-serif'] = ['Computer Modern'] | |
rc('text.latex', preamble=r'\usepackage[T2A]{fontenc} \usepackage[utf8]{inputenc} \usepackage{bm}') | |
rc('axes', linewidth=1.2) | |
rc('xtick.major', size=4, width=1.1) | |
rc('ytick.major', size=4, width=1.1) | |
fig, ax = plt.subplots() | |
fig.subplots_adjust(left=.15, bottom=.15, right=.95, top=.95) | |
#}}} | |
# Initial parameters (SI units) | |
x0 = 0 | |
y0 = 0 | |
v0 = 20 | |
g = 10 | |
a = 75 | |
times = np.linspace(0.001, 4.5, 200) | |
rs=[] | |
drs=[] | |
cmap = plt.get_cmap('coolwarm') | |
cmapb = plt.get_cmap('Blues') | |
cmapr = plt.get_cmap('Oranges') | |
i=0 | |
for t in times: | |
x = v0*cos(a)*t | |
y = v0*sin(a)*t - g*t**2/2 | |
r = sqrt(x**2+y**2) | |
rs = np.append(rs, r) | |
drs = np.append(drs, rs[i]-rs[i-1]) | |
i+=1 | |
drs /= np.amax(drs) | |
i=0 | |
for t in times: | |
# Kinematics equations | |
x = v0*cos(a)*t | |
y = v0*sin(a)*t - g*t**2/2 | |
vx = v0*cos(a) | |
vy = v0*sin(a) - g*t | |
# v | |
vc = '#333333' | |
ax.arrow(x, y, vx, vy, | |
width=0.3, | |
head_length=1, | |
ec='None', | |
fc=vc, | |
zorder=4, | |
length_includes_head=True) | |
ax.text((x+vx)*1.03, y+vy, '$\\bm{v}$', c=vc, ha='left') | |
# r | |
if drs[i]>=0: | |
fcr=cmapb(10+int(drs[i]*400)) | |
else: | |
fcr=cmapr(10+int(abs(drs[i])*600)) | |
print (int(drs[i]*256)) | |
ax.arrow(x0, y0, x, y, | |
width=0.3, | |
head_length=1.5, | |
ec='None', | |
fc=fcr, | |
length_includes_head=True) | |
ax.text((x0+x)/2 , (y0+y)/2 - 1, '$\\bm{r}$', c=fcr, ha='center', va='top') | |
# Final plot setup and trajectory | |
times = np.linspace(0,5,100) | |
x = v0*cos(a)*times | |
y = v0*sin(a)*times - g*times**2/2 | |
vx = v0*cos(a) | |
vy = v0*sin(a) - g*times | |
ax.plot(x, y, ls='-', c='#888888', lw=1.4) | |
ax.plot([], [], ' ', label='$v_0={}~$'.format(v0)+'\\textrm{м/с}') | |
ax.plot([], [], ' ', label='$\\alpha={}^\circ$'.format(a)) | |
ax.plot([], [], ' ', label='$t={}~$'.format( "{:.1f}".format(t) )+'\\textrm{с}') | |
ax.legend(markerscale=0, handletextpad=-2.0) | |
ax.grid() | |
plt.axis('equal') | |
ax.set_axisbelow(True) | |
ax.set_xlim([-10,80]) | |
ax.set_ylim([-55,40]) | |
ax.set_xlabel('$x$ [\\textrm{м}]') | |
ax.set_ylabel('$y$ [\\textrm{м}]') | |
# Save the figure | |
plt.savefig('rv_t/' + str(a) + '_' + str(t)+'.png', bbox_inches='tight') | |
plt.cla() | |
i+=1 | |
# Use imagemagick to convert *.png to *.gif: | |
# convert -delay 0.01 -loop 0 -reverse *.png r.gif |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment