Skip to content

Instantly share code, notes, and snippets.

@prakritidev
Created June 25, 2017 13:17
Show Gist options
  • Save prakritidev/a250f1f7bd91fc24bad8f25f4d78263f to your computer and use it in GitHub Desktop.
Save prakritidev/a250f1f7bd91fc24bad8f25f4d78263f to your computer and use it in GitHub Desktop.
implementation of Convonent using Tensor Flow explained in detail.
# For the maths used in Convonets please refer to the Andrej Karpathy blog and this link > http://cs231n.github.io/convolutional-networks/#conv
# IF you want to go in detail please read this -> https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
import argparse
import sys
#importing datset from tensorflow
from tensorflow.examples.tutorials.mnist import input_data
#importing tensorflow for computation
import tensorflow as tf
FLAGS = None
def mnist_convonet(x):
# x will recieve a tensor of dimension (N_examples, 784), 784 dimension after faltnning th e image.
# 28,28 is the size of the image; the dimansion will reduce when you read further code.
x_image = tf.reshape(x, [-1,28,28,1])
# Frist Layer, this will be a Conv Layer -> Max pooling layer
# W_conv1 ->Weight of first conv Layer
# 5,5 -> Patch size
# 1 -> Input channel (our image is grascale; if there is RGB then channel -> 3)
# 32 -> Number of output Channel.
# After this step our image will change from 1 input channel to 32 input channel
W_conv1 = weight_variable([5, 5, 1, 32])
#bias
b_conv1 = bias_variable([32])
#Relu is used as activation Layer, we don't use sigmoid because Relu is Faster and reduce liklehood of Vanishing Gradient
#Relu is f = max(0,a); f = max(0,a); where a = Wx + b
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
# Pooling layer - downsamples by 2X.
# Pooling Layer are useful to reduce the size of your input parameters(successively reduce the dimension after convolution operations)
# control model overfitting
# This method will reduce the image size to 14x14(image size reduced; The formula is given on the website mnetioned above)
h_pool1 = max_pool_2x2(h_conv1)
# Second convolutional layer -- maps 32 feature maps to 64.
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
# Second pooling layer.
#This method will reduce the image size to 7x7(image size reduced again, )
h_pool2 = max_pool_2x2(h_conv2)
# Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image
# is down to 7x7x64 feature maps -- maps this to 1024 features.
# Why we use FC Layer, Please read this answer on quora.
#https://www.quora.com/Why-are-fully-connected-layers-used-at-the-very-end-output-side-of-convolutional-NNs-Why-not-earlier
W_fc1 = weight_variable([7*7*64,1024]) # weight Matrix
b_fc1 = bias_variable([1024]) # Bias Matrix
#Same procedure as aboouve layeres
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) # Image Flattening
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) # apply relu actvation.
# Dropout - controls the complexity of the model, prevents co-adaptation of features
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# Now Mapping the 1024 features to 10 classes.
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
return y_conv, keep_prob
def conv2d(x, W):
# Stride -> factor by with which we slide the filter
# When the stride is 1 then we move the filters one pixel at a time
# Padding -> allow us to control the spatial size of the output volumes
""" returns a 2d convolution layer with full stride."""
return tf.nn.conv2d(x,W, strides=[1,1,1,1], padding ='SAME')
def max_pool_2x2(x):
"""max_pool_2x2 downsamples a feature map by 2X."""
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
def weight_variable(shape):
"""weight_variable generates a weight variable of a given shape."""
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
"""bias_variable generates a bias variable of a given shape."""
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def main(_):
# Data Import
mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot = True)
# Create model
x = tf.placeholder(tf.float32, [None, 784])
#define loss
y_ = tf.placeholder(tf.float32, [None, 10])
y_conv, keep_prob = deepnn(x)
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
with tf.Session() as sess:
sess.run(tf.global_varaible_initializer())
for i in range(1000):
batch = mnist.train.next_batch(100)
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
print('step %d, training accuracy %g' % (i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print('test accuracy %g' % accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str,
default='/tmp/tensorflow/mnist/input_data',
help='Directory for storing input data')
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment