This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
| |
| |
def hard_composite(A, B): | |
alpha_A = A[:, :, 3:4] | |
alpha_B = B[:, :, 3:4] | |
# A over B | |
final_composite = A * alpha_A + B * alpha_B * (1 - alpha_A) | |
return final_composite | |
| |
def soft_composite(A, B, z_A, z_B): | |
# gradients can be propagated through z_A, z_B | |
# how z_A, z_B change decides the visibility of the elments in overlapping regions | |
alpha_A = A[:, :, 3:4] | |
alpha_B = B[:, :, 3:4] | |
inv_mask = (1 - alpha_A) * (1 - alpha_B) | |
| |
e_z_A = np.exp(z_A) | |
e_z_B = np.exp(z_B) | |
| |
sum_alpha = alpha_A * e_z_A + alpha_B * e_z_B + inv_mask | |
new_alpha_A = alpha_A * e_z_A/sum_alpha | |
new_alpha_B = alpha_B * e_z_B/sum_alpha | |
final_composite = A * new_alpha_A + B * new_alpha_B | |
return final_composite | |
| |
| |
| |
img_1 = plt.imread('1.png') | |
img_2 = plt.imread('2.png') | |
| |
hard_1_over_2 = hard_composite(img_1, img_2) | |
hard_2_over_1 = hard_composite(img_2, img_1) | |
| |
soft_zA5_zB3 = soft_composite(img_1, img_2, 5, 3) | |
soft_zA5_zB5 = soft_composite(img_1, img_2, 5, 5) | |
soft_zA5_zB7 = soft_composite(img_1, img_2, 5, 7) | |
soft_zA5_zB10 = soft_composite(img_1, img_2, 5, 10) | |
| |
plt.imsave('hard_1_over_2.png', hard_1_over_2) | |
plt.imsave('hard_2_over_1.png', hard_2_over_1) | |
plt.imsave('soft_zA5_zB3.png', soft_zA5_zB3) | |
plt.imsave('soft_zA5_zB5.png', soft_zA5_zB5) | |
plt.imsave('soft_zA5_zB7.png', soft_zA5_zB7) | |
plt.imsave('soft_zA5_zB10.png', soft_zA5_zB10) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment