Last active
March 9, 2020 09:20
-
-
Save prigoyal/b245776903efbac00ee89699e001c9bd to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math | |
from torch import nn | |
from torch.nn import init | |
# pre-trained SRResNet model | |
model_url = 'https://s3.amazonaws.com/pytorch/demos/srresnet-e10b2039.pth' | |
# model definition | |
def _initialize_orthogonal(conv): | |
prelu_gain = math.sqrt(2) | |
init.orthogonal(conv.weight, gain=prelu_gain) | |
if conv.bias is not None: | |
conv.bias.data.zero_() | |
class ResidualBlock(nn.Module): | |
def __init__(self, n_filters): | |
super(ResidualBlock, self).__init__() | |
self.conv1 = nn.Conv2d(n_filters, n_filters, kernel_size=3, padding=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(n_filters) | |
self.prelu = nn.PReLU(n_filters) | |
self.conv2 = nn.Conv2d(n_filters, n_filters, kernel_size=3, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(n_filters) | |
# Orthogonal initialisation | |
_initialize_orthogonal(self.conv1) | |
_initialize_orthogonal(self.conv2) | |
def forward(self, x): | |
residual = self.prelu(self.bn1(self.conv1(x))) | |
residual = self.bn2(self.conv2(residual)) | |
return x + residual | |
class UpscaleBlock(nn.Module): | |
def __init__(self, n_filters): | |
super(UpscaleBlock, self).__init__() | |
self.upscaling_conv = nn.Conv2d(n_filters, 4 * n_filters, kernel_size=3, padding=1) | |
self.upscaling_shuffler = nn.PixelShuffle(2) | |
self.upscaling = nn.PReLU(n_filters) | |
_initialize_orthogonal(self.upscaling_conv) | |
def forward(self, x): | |
return self.upscaling(self.upscaling_shuffler(self.upscaling_conv(x))) | |
class SRResNet(nn.Module): | |
def __init__(self, rescale_factor, n_filters, n_blocks): | |
super(SRResNet, self).__init__() | |
self.rescale_levels = int(math.log(rescale_factor, 2)) | |
self.n_filters = n_filters | |
self.n_blocks = n_blocks | |
self.conv1 = nn.Conv2d(3, n_filters, kernel_size=9, padding=4) | |
self.prelu1 = nn.PReLU(n_filters) | |
for residual_block_num in range(1, n_blocks + 1): | |
residual_block = ResidualBlock(self.n_filters) | |
self.add_module('residual_block' + str(residual_block_num), nn.Sequential(residual_block)) | |
self.skip_conv = nn.Conv2d(n_filters, n_filters, kernel_size=3, padding=1, bias=False) | |
self.skip_bn = nn.BatchNorm2d(n_filters) | |
for upscale_block_num in range(1, self.rescale_levels + 1): | |
upscale_block = UpscaleBlock(self.n_filters) | |
self.add_module('upscale_block' + str(upscale_block_num), nn.Sequential(upscale_block)) | |
self.output_conv = nn.Conv2d(n_filters, 3, kernel_size=9, padding=4) | |
# Orthogonal initialisation | |
_initialize_orthogonal(self.conv1) | |
_initialize_orthogonal(self.skip_conv) | |
_initialize_orthogonal(self.output_conv) | |
def forward(self, x): | |
x_init = self.prelu1(self.conv1(x)) | |
x = self.residual_block1(x_init) | |
for residual_block_num in range(2, self.n_blocks + 1): | |
x = getattr(self, 'residual_block' + str(residual_block_num))(x) | |
x = self.skip_bn(self.skip_conv(x)) + x_init | |
for upscale_block_num in range(1, self.rescale_levels + 1): | |
x = getattr(self, 'upscale_block' + str(upscale_block_num))(x) | |
return self.output_conv(x) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
https://gist.github.com/prigoyal/b245776903efbac00ee89699e001c9bd#file-srresnet-py-L78
Line 78, is that should be