Skip to content

Instantly share code, notes, and snippets.

@priscian
Last active February 12, 2024 17:44
Show Gist options
  • Star 4 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save priscian/5a10f13dbf727048aee17e5d3849041a to your computer and use it in GitHub Desktop.
Save priscian/5a10f13dbf727048aee17e5d3849041a to your computer and use it in GitHub Desktop.

Paleotemperature Hockey Sticks

This is a list of paleoclimate studies [262] that use a variety of temperature proxies and methodologies in affirmation of Michael Mann's hockey stick result [1], which shows strong recent hemispheric and global warming. The last column provides an exemplary figure from each paper.

The original MBH98 paper [1] has so far been cited 1200+ times (Web of Science).

N.B. For the original text list without hyperlinks or figures, go here. It's still being updated.

What do paleotemperature studies tell us in general?

Global average paleotemperature reconstructions tell us that we're almost certainly warmer now than in the past 2000 years [Neukom &al 2019], very likely warmer than in the past 24,000 years [Osman &al 2021], and probably warmer than in the past 125,000 years [Kaufman & McKay 2022]. Even the weaker anthropogenic emissions scenarios predict modeled temperatures to be the highest in 2,000,000 years (or more) by the end of the 21st century [Kaufman & McKay 2022]. Note that the range and uncertainty of large-scale or global average temperatures (GAT) is much smaller than local daily temperature fluctuations, so small changes in GAT can lead to large climatic differences; e.g. globally, we're only ~ 6 °C different from the last Ice Age [Tierney &al 2020].


Table of Contents

  1. Global or hemispherical studies
  2. Large-scale regional studies

Global or hemispherical studies

  Study Figure
1. Mann ME, Bradley RS, & Hughes MK: Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392(6678):779–787, 1998. dx.doi.org/10.1038/33859 Mann et al. 1998, Fig. 5b
2. Jones PD, Briffa KR, Barnett TP, & Tett SFB: High-resolution palaeoclimatic records for the last millennium: Interpretation, integration and comparison with General Circulation Model control-run temperatures. Holocene 8(4):455–471, 1998. dx.doi.org/10.1191/095968398667194956 Jones et al. 1998, Fig. 4
3. Pollack HN, Huang S, & Shen, P-Y: Climate change record in subsurface temperatures: A global perspective. Science 282(5387) 279–281, 1998. dx.doi.org/10.1126/science.282.5387.279 Pollack et al. 1998, Fig. 3
4. Mann ME, Bradley RS, & Hughes MK: Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations. Geophys Res Lett 26(6):759–762, 1999. dx.doi.org/10.1029/1999GL900070 Mann et al. 1999, Fig. 3a
5. Briffa KR: Annual climate variability in the Holocene: Interpreting the message of ancient trees. Quaternary Sci Rev 19(1):87–105, 2000. dx.doi.org/10.1016/S0277-3791(99)00056-6 Briffa 2000, Fig. 1
6. Crowley TJ & Lowery TS: How warm was the medieval warm period? Ambio 29(1):51–54, 2000. dx.doi.org/10.1579/0044-7447-29.1.51 Crowley & Lowery 2000, Fig. 4
7. Huang S, Pollack HN, & Shen P-Y: Temperature trends over the past five centuries reconstructed from borehole temperatures. Nature 403(6771):756–758, 2000. dx.doi.org/10.1038/35001556 Huang et al. 2000, Fig. 2
8. Jones PD, Osborn TJ, & Briffa KR: The evolution of climate over the last millennium. Science 292(5517):662–667, 2001. dx.doi.org/10.1126/science.1059126 Jones et al. 2001, Fig. 2
9. Briffa KR, Osborn TJ, Schweingruber FH, Harris IC, Jones PD, et al.: Low-frequency temperature variations from a northern tree ring density network. J Geophys Res-Atmos, 106(D3):2929–2941, 2001. dx.doi.org/10.1029/2000JD900617 Briffa et al. 2001, Fig. 3
10. Esper J, Cook ER, & Schweingruber FH: Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295(5563):2250–2253, 2002. dx.doi.org/10.1126/science.1066208 Esper et al. 2002, Fig. 3
11. Mann ME, Rutherford S, Bradley RS, Hughes MK, & Keimig FT: Optimal surface temperature reconstructions using terrestrial borehole data. J Geophys Res-Atmos 108(D7), 2003. dx.doi.org/10.1029/2002JD002532 Mann et al. 2003, Fig. 3
12. Mann ME & Jones PD: Global surface temperatures over the past two millennia. Geophys Res Lett 30(15), 2003. dx.doi.org/10.1029/2003GL017814 Mann & Jones 2003, Fig. 2
13. Briffa KR, Osborn TJ, & Schweingruber FH: Large-scale temperature inferences from tree rings: A review. Global Planet Change 40(1):11–26, 2004. dx.doi.org/10.1016/S0921-8181(03)00095-X Briffa et al. 2004, Fig. 8
14. Pollack HN & Smerdon JE: Borehole climate reconstructions: Spatial structure and hemispheric averages. J Geophys Res-Atmos 109(D11):D11106, 2004. dx.doi.org/10.1029/2003JD004163 Pollack & Smerdon 2004, Fig. 5
15. Huang S: Merging information from different resources for new insight into climate change in the past and future. Geophys Res Lett 31:L13205, 2004. dx.doi.org/10.1029/2004GL019781 Huang 2004, Fig. 2
16. Jones PD & Mann ME: Climate over past millennia. Rev Geophys 42(2):RG2002, 2004. dx.doi.org/10.1029/2003RG000143 Jones & Mann 2004, Fig. 8
17. Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, & Karlén W: Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433(7026):613–617, 2005. dx.doi.org/10.1038/nature03265 Moberg et al. 2005, Fig. 2
18. Oerlemans J: Extracting a climate signal from 169 glacier records. Science 308(5722):675–677, 2005. dx.doi.org/10.1126/science.1107046 Oerlemans 2005, Fig. 3b
19. Rutherford S, Mann ME, Osborn TJ, Briffa KR, Jones PD, et al.: Proxy-based Northern Hemisphere surface temperature reconstructions: Sensitivity to method, predictor network, target season, and target domain. J Climate 18(13):2308–2329, 2005. dx.doi.org/10.1175/JCLI3351.1 Rutherford et al. 2005, Fig. 3
20. D'Arrigo R, Wilson R, & Jacoby G: On the long-term context for late twentieth century warming. J Geophys Res-Atmos 111(D3):D03103, 2006. dx.doi.org/10.1029/2005JD006352 D'Arrigo et al. 2006, Fig. 6
21. Osborn TJ & Briffa KR: The spatial extent of 20th-century warmth in the context of the past 1200 years. Science 311(5762):841–844, 2006. dx.doi.org/10.1126/science.1120514 Osborn & Briffa 2006, Fig. 3d
22. Viau AE, Gajewski K, Sawada MC, & Fines P: Millennial-scale temperature variations in North America during the Holocene. J Geophys Res-Atmos 111(D9):D09102, 2006. dx.doi.org/10.1029/2005JD006031 Viau et al. 2006, Fig. 8
23. Hegerl GC, Crowley TJ, Hyde WT, & Frame DJ: Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature 440(7087):1029–1032, 2006. dx.doi.org/10.1038/nature04679 Hegerl et al. 2006, Fig. 1
24. Smith CL, Baker A, Fairchild IJ, Frisia S, & Borsato A: Reconstructing hemispheric-scale climates from multiple stalagmite records. Int J Climatol 26(10):1417–1424, 2006. dx.doi.org/10.1002/joc.1329 Smith et al. 2006, Fig. 1
25. Juckes MN, Allen MR, Briffa KR, Esper J, Hegerl GC, et al.: Millennial temperature reconstruction intercomparison and evaluation. Clim Past 3(4):591–609, 2007. dx.doi.org/10.5194/cp-3-591-2007 Juckes et al. 2007, Fig. 2
26. Wahl ER & Ammann CM: Robustness of the Mann, Bradley, Hughes reconstruction of Northern Hemisphere surface temperatures: Examination of criticisms based on the nature and processing of proxy climate evidence. Climatic Change 85(1–2):33–69, 2007. dx.doi.org/10.1007/s10584-006-9105-7 Wahl & Ammann 2007, Fig. 2
27. Huang SP, Pollack HN, & Shen P-Y: A late Quaternary climate reconstruction based on borehole heat flux data, borehole temperature data, and the instrumental record. Geophys Res Lett 35(13):L13703, 2008. dx.doi.org/10.1029/2008GL034187 Huang et al. 2008, Fig. 2
28. Lee TC, Zwiers FW, & Tsao M: Evaluation of proxy-based millennial reconstruction methods. Clim Dynam 31(2–3):263–281, 2008. dx.doi.org/10.1007/s00382-007-0351-9 Lee et al. 2008, Fig. 8
29. Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, et al.: Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. P Natl Acad Sci USA 105(36):13252–13257, 2008. dx.doi.org/10.1073/pnas.0805721105 Mann et al. 2008, Fig. 3
30. Kaufman DS, Schneider DP, McKay NP, Ammann CM, Bradley RS, et al.: Recent warming reverses long-term Arctic cooling. Science 325(5945):1236–1239, 2009. dx.doi.org/10.1126/science.1173983 Kaufman et al. 2009, Fig. 3
31. Tingley MP & Huybers P: A Bayesian algorithm for reconstructing climate anomalies in space and time. Part I: Development and applications to paleoclimate reconstruction problems. J Climate 23(10):2759–2781, 2010. dx.doi.org/10.1175/2009JCLI3015.1 Tingley & Huybers 2010, Fig. 7
32. Ljungqvist FC: A new reconstruction of temperature variability in the extra-tropical Northern Hemisphere during the last two millennia. Geogr Ann A 92(3):339–351, 2010. dx.doi.org/10.1111/j.1468-0459.2010.00399.x Ljunqvist 2010, Fig. 3
33. Goosse H, Crespin E, de Montety A, Mann ME, Renssen H, & Timmermann A: Reconstructing surface temperature changes over the past 600 years using climate model simulations with data assimilation. J Geophys Res-Atmos 115(D9), 2010. dx.doi.org/10.1029/2009JD012737 Goosse et al. 2010, Fig. 8
34. Christiansen B & Ljungqvist FC: Reconstruction of the extratropical NH mean temperature over the last millennium with a method that preserves low-frequency variability. J Climate 24(23):6013–6034, 2011. dx.doi.org/10.1175/2011JCLI4145.1 Christiansen & Ljungqvist 2011, Fig. 10
35. Ljungqvist FC, Krusic PJ, Brattström G, & Sundqvist HS: Northern Hemisphere temperature patterns in the last 12 centuries. Clim Past 8(1):227–249, 2012. dx.doi.org/10.5194/cp-8-227-2012 Ljungqvist et al. 2012, Fig. 4
36. Christiansen B & Ljungqvist FC: The extra-tropical Northern Hemisphere temperature in the last two millennia: Reconstructions of low-frequency variability. Clim Past 8(2):765–786, 2012. dx.doi.org/10.5194/cp-8-765-2012 Christiansen & Ljungqvist 2012, Fig. 6
37. PAGES 2k Consortium: Continental-scale temperature variability during the past two millennia. Nat Geosci 6(5):339–346, 2013. dx.doi.org/10.1038/ngeo1797 PAGES 2k Consortium 2013, Fig. 4b
38. Marcott SA, Shakun JD, Clark PU, & Mix AC: A reconstruction of regional and global temperature for the past 11,300 years. Science 339(6124):1198–1201, 2013. dx.doi.org/10.1126/science.1228026 Marcott et al. 2013, Fig. 1a-b
39. Shi F, Yang B, Mairesse A, von Gunten L, Li J, et al.: Northern hemisphere temperature reconstruction during the last millennium using multiple annual proxies. Climate Res 56:231–244, 2013. dx.doi.org/10.3354/cr01156 Shi et al. 2013, Fig. 4
40. Neukom R, Gergis J, Karoly DJ, Wanner H, Curran M, et al.: Inter-hemispheric temperature variability over the past millennium. Nat Clim Change 4(5):362-367, 2014. dx.doi.org/10.1038/nclimate2174 Neukom et al. 2014, Fig. 2
41. Barboza L, Li B, Tingley MP, & Viens FG: Reconstructing past temperatures from natural proxies and estimated climate forcings using short-and long-memory models. Ann Appl Stat 8(4):1966–2001, 2014. dx.doi.org/10.1214/14-AOAS785 Barboza et al. 2014, Fig. 6
42. Tierney JE, Abram NJ, Anchukaitis KJ, Evans MN, Giry C, et al.: Tropical sea surface temperatures for the past four centuries reconstructed from coral archives. Paleoceanography 30(3):226–252, 2015. dx.doi.org/10.1002/2014PA002717 Tierney et al. 2015, Fig. 10
43. Tingley MP & Huybers P: Heterogeneous warming of Northern Hemisphere surface temperatures over the last 1200 years. J Geophys Res-Atmos 120(9):4040–4056, 2015. dx.doi.org/10.1002/2014JD022506 Tingley & Huybers 2010, Fig. 7
44. Wilson R, Anchukaitis K, Briffa KR, Büntgen U, Cook E, et al.: Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context. Quaternary Sci Rev 134:1–8, 2016. dx.doi.org/10.1016/j.quascirev.2015.12.005 Wilson et al. 2016, Fig. 2
45. Xing P, Chen X, Luo Y, Nie S, Zhao Z, et al.: The extratropical Northern Hemisphere temperature reconstruction during the last millennium based on a novel method. PLOS ONE 11(1):e0146776, 2016. dx.doi.org/10.1371/journal.pone.0146776 Xing et al. 2016, Fig. 7
46. Abram NJ, McGregor HV, Tierney JE, Evans MN, McKay NP, et al.: Early onset of industrial-era warming across the oceans and continents. Nature 536(7617):411–418, 2016. dx.doi.org/10.1038/nature19082 Abram et al. 2016, Fig. 2
47. Hakim GJ, Emile-Geay J, Steig EJ, Noone D, Anderson DM, et al.: The last millennium climate reanalysis project: Framework and first results. J Geophys Res-Atmos. 121(12):6745–6764, 2016. dx.doi.org/10.1002/2016JD024751 Hakim et al. 2016, Fig. 2
48. Snyder CW: Evolution of global temperature over the past two million years. Nature 538(7624):226–28, 2016. dx.doi.org/10.1038/nature19798 Snyder 2016, Fig. 1
49. Pei Q, Zhang DD, Li J, & Lee HF: Proxy-based Northern Hemisphere temperature reconstruction for the mid-to-late Holocene. Theor Appl Climatol 1–11, 2016. dx.doi.org/10.1007/s00704-016-1932-5 Pei et al. 2016, Fig. 3
50. Emile-Geay J, McKay NP, Kaufman DS, von Gunten L, Wang J, et al.: A global multiproxy database for temperature reconstructions of the Common Era. Sci Data 4:170088, 2017. dx.doi.org/10.1038/sdata.2017.88 PAGES 2k Consortium 2017, Fig. 8
51. Marsicek J, Shuman BN, Bartlein PJ, Shafer SL, & Brewer S: Reconciling divergent trends and millennial variations in Holocene temperatures. Nature 554:92–96, 2018. dx.doi.org/10.1038/nature25464 Mariscek et al. 2018, Fig. 2
52. Neukom R, Barboza LA, Erb MP, Shi F, Emile-Geay J, et al.: Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nat Geosci 12:643–649, 2019. dx.doi.org/10.1038/s41561-019-0400-0 PAGES 2k Consortium 2019, Fig. 1
53. Tardif R, Hakim GJ, Perkins WA, Horlick KA, Erb MP, et al.: Last millennium reanalysis with an expanded proxy database and seasonal proxy modeling. Clim Past 15(4):1251–1273, 2019. dx.doi.org/10.5194/cp-15-1251-2019 Tardif et al. 2019, Fig. 2
54. Neukom R, Steiger N, Gómez-Navarro JJ, Wang J, & Werner JP: No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature 571(7766):550–554, 2019. dx.doi.org/10.1038/s41586-019-1401-2 Neukom et al. 2019, Fig. 2
55. Kaufman D, McKay N, Routson C, Erb M, Davis B, et al.: A global database of Holocene paleotemperature records. Sci Data 7(1):1–34, 2020. dx.doi.org/10.1038/s41597-020-0445-3 Kaufman et al. 2020a, Fig. 8
56. Kaufman D, McKay N, Routson C, Erb M, Dätwyler C, et al.: Holocene global mean surface temperature, a multi-method reconstruction approach. Sci Data 7(201):1–13, 2020. dx.doi.org/10.1038/s41597-020-0530-7 Kaufman et al. 2020b, Fig. 3
57. Westerhold T, Marwan N, Drury AJ, Liebrand D, Agnini C, et al.: An astronomically dated record of Earth's climate and its predictability over the last 66 million years. Science 369(6509):1383–1387, 2020. dx.doi.org/10.1073/pnas.20141661 Westerhold et al. 2020, Fig. S34
58. Bova S, Rosenthal Y, Liu Z, Godad SP, & Yan M: Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature 589:548–553, 2021. dx.doi.org/10.1038/s41586-020-03155-x Bova et al. 2021, Fig. 3
59. Osman MB, Tierney JE, Zhu J, Tardif R, Hakim GJ, et al.: Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599:239–244, 2021. dx.doi.org/10.1038/s41586-021-03984-4 Osman et al. 2021, Fig. 2
60. Kaufman DS & McKay NP: Past and future warming—direct comparison on multi-century timescales. Clim Past 18(4):911–917, 2022. dx.doi.org/10.5194/cp-18-911-2022 Kaufman & McKay 2022, Fig. 1
61. Anchukaitis KJ & Smerdon JE: Progress and uncertainties in global and hemispheric temperature reconstructions of the Common Era. Quaternary Sci Rev 286:107537, 2022. dx.doi.org/10.1016/j.quascirev.2022.107537 Anchukaitis & Smerdon 2022, Fig. 1
62. Erb MP, McKay NP, Steiger N, Dee S, Hancock C, et al. Reconstructing Holocene temperatures in time and space using paleoclimate data assimilation. Clim Past 18(12):2599–2629, 2022. dx.doi.org/10.5194/cp-18-2599-2022 Erb et al. 2022, Fig. 13

Large-scale regional studies

And for fun, some large-scale regional hockey sticks:

  Study Figure
63. Hanhijärvi S, Tingley MP, & Korhola A: Pairwise comparisons to reconstruct mean temperature in the Arctic Atlantic Region over the last 2,000 years. Clim Dynam 41(7-8):2039–2060, 2013. dx.doi.org/10.1007/s00382-013-1701-4 Hanhijärvi et al. 2022, Fig. 7
64. Davi NK, D'Arrigo R, Jacoby GC, Cook ER, Anchukaitis K, et al.: A long-term context (931–2005 C.E.) for rapid warming over Central Asia. Quaternary Sci Rev 121:89–97, 2015. dx.doi.org/10.1016/j.quascirev.2015.05.020 Davi et al. 2015, Fig. 3
65. Luterbacher J, Werner JP, Smerdon JE, Fernández-Donado L, González-Rouco FJ, et al.: European summer temperatures since Roman times. Environ Res Lett 11(2):024001, 2016. dx.doi.org/10.1088/1748-9326/11/2/024001 Luterbacher et al. 2016, Fig. 1
66. Gergis J, Neukom R, Gallant AJE, & Karoly DK: Australasian Temperature Reconstructions Spanning the Last Millennium. J Climate 29(15):5365–5392, 2016. dx.doi.org/10.1175/JCLI-D-13-00781.1 Gergis et al. 2016, Fig. 5
67. Jaume-Santero F, Pickler C, Beltrami H, & Mareschal J-C: North American regional climate reconstruction from ground surface temperature histories. Clim Past 12(12):2181–2194, 2016. dx.doi.org/10.5194/cp-12-2181-2016 Jaume-Santero et al. 2016, Fig. 6
68. Büntgen U, Arseneault D, Boucher É, Churakova OV, Gennaretti F, et al.: Prominent role of volcanism in Common Era climate variability and human history. Dendrochronologia 64(125757):1–11, 2020. dx.doi.org/10.1016/j.dendro.2020.125757 Büntgen et al. 2020, Fig. 2
69. Lapointe F, Bradley RS, Francus P, Balascio NL, Abbott MB, et al.: Annually resolved Atlantic sea surface temperature variability over the past 2,900 y. P Natl Acad Sci USA 117(44):27171–27178, 2020. dx.doi.org/10.1073/pnas.2014166117 Lapointe et al. 2020, Fig. 3
70. Büntgen U, Allen K, Anchukaitis KJ, Arseneault D, Boucher É, et al.: The influence of decision-making in tree ring-based climate reconstructions. Nat Commun 12(3411):1–10, 2021. dx.doi.org/10.1038/s41467-021-23627-6 Büntgen et al. 2021, Fig. 4
71. Hörhold M, Münch T, Weißbach S, Kipfstuhl S, Freitag J, et al.: Modern temperatures in central–north Greenland warmest in past millennium. Nature 613(7944):503–507, 2023. dx.doi.org/10.1038/s41586-022-05517-z Hörhold et al. 2023, Fig. 1
72. Björklund J, Seftigen K, Stoffel M, Fonti MV, Kottlow S, et al.: Fennoscandian tree-ring anatomy shows a warmer modern than medieval climate. Nature 620(7972):97–103, 2023. dx.doi.org/10.1038/s41586-023-06176-4 Björklund et al. 2023, Fig. 2
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment