Created
November 17, 2018 13:59
-
-
Save ptrblck/27b4de4e291ffc0d85b33858d0bc8779 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
class UNet_down_block(torch.nn.Module): | |
def __init__(self, input_channel, output_channel, down_size): | |
super(UNet_down_block, self).__init__() | |
self.conv1 = torch.nn.Conv2d(input_channel, output_channel, 3, padding=1) | |
self.bn1 = torch.nn.BatchNorm2d(output_channel) | |
self.conv2 = torch.nn.Conv2d(output_channel, output_channel, 3, padding=1) | |
self.bn2 = torch.nn.BatchNorm2d(output_channel) | |
self.conv3 = torch.nn.Conv2d(output_channel, output_channel, 3, padding=1) | |
self.bn3 = torch.nn.BatchNorm2d(output_channel) | |
self.max_pool = torch.nn.MaxPool2d(2, 2) | |
self.relu = torch.nn.ReLU() | |
self.down_size = down_size | |
def forward(self, x): | |
if self.down_size: | |
x = self.max_pool(x) | |
x = self.relu(self.bn1(self.conv1(x))) | |
x = self.relu(self.bn2(self.conv2(x))) | |
x = self.relu(self.bn3(self.conv3(x))) | |
return x | |
class UNet_up_block(torch.nn.Module): | |
def __init__(self, prev_channel, input_channel, output_channel): | |
super(UNet_up_block, self).__init__() | |
self.up_sampling = torch.nn.Upsample(scale_factor=2, mode='bilinear') | |
self.conv1 = torch.nn.Conv2d(input_channel + input_channel, output_channel, 3, padding=1) | |
self.bn1 = torch.nn.BatchNorm2d(output_channel) | |
self.conv2 = torch.nn.Conv2d(output_channel, output_channel, 3, padding=1) | |
self.bn2 = torch.nn.BatchNorm2d(output_channel) | |
self.conv3 = torch.nn.Conv2d(output_channel, output_channel, 3, padding=1) | |
self.bn3 = torch.nn.BatchNorm2d(output_channel) | |
self.relu = torch.nn.ReLU() | |
# self.up1=torch.nn.ConvTranspose2d(12,25,3,stride=2,padding=1) | |
def forward(self, prev_feature_map, x,k): | |
# print('before up',x.size()) | |
if k!=0: | |
x = self.up_sampling(x) | |
x = torch.cat((x, prev_feature_map), dim=1) | |
x = self.relu(self.bn1(self.conv1(x))) | |
x = self.relu(self.bn2(self.conv2(x))) | |
x = self.relu(self.bn3(self.conv3(x))) | |
return x | |
class UNet(torch.nn.Module): | |
def __init__(self): | |
super(UNet, self).__init__() | |
self.down_block1 = UNet_down_block(3, 16, False) | |
self.down_block2 = UNet_down_block(16, 32, True) | |
self.down_block3 = UNet_down_block(32, 64, True) | |
self.mid_conv1 = torch.nn.Conv2d(64, 64, 3, padding=1) | |
self.bn1 = torch.nn.BatchNorm2d(64) | |
self.mid_conv2 = torch.nn.Conv2d(64, 64, 3, padding=1) | |
self.bn2 = torch.nn.BatchNorm2d(64) | |
self.mid_conv3 = torch.nn.Conv2d(64, 64, 3, padding=1) | |
self.bn3 = torch.nn.BatchNorm2d(64) | |
self.up_block5 = UNet_up_block(32, 64, 32) | |
self.up_block6 = UNet_up_block(16, 32, 16) | |
self.up_block7 = UNet_up_block(3, 16, 16) | |
self.last_conv1 = torch.nn.Conv2d(16, 3, 3, padding=1) | |
self.last_bn = torch.nn.BatchNorm2d(3) | |
self.last_conv2 = torch.nn.Conv2d(3, 1, 1, padding=0) | |
self.relu = torch.nn.ReLU() | |
self.max_pool = torch.nn.MaxPool2d(2, 2) | |
def forward(self, x): | |
# ins=x.clone() | |
self.x1 = self.down_block1(x) | |
# print('self.x1',self.x1.size()) | |
self.x2 = self.down_block2(self.x1) | |
# print('self.x2',self.x2.size()) | |
self.x3 = self.down_block3(self.x2) | |
# print('self.x3',self.x3.size()) | |
# self.mid=self.max_pool(self.x3) | |
self.x7 = self.relu(self.bn1(self.mid_conv1(self.x3))) | |
self.x7 = self.relu(self.bn2(self.mid_conv2(self.x7))) | |
self.x7 = self.relu(self.bn3(self.mid_conv3(self.x7))) | |
# print('prev,x',self.x7.size(),self.x3.size()) | |
x = self.up_block5(self.x3, self.x7,k=0) | |
x = self.up_block6(self.x2, x,k=1) | |
x=self.up_block7(self.x1,x,k=1) | |
x = self.relu(self.last_bn(self.last_conv1(x))) | |
x = self.last_conv2(x) | |
return x | |
def dice(input, taget): | |
smooth=.001 | |
input=input.view(-1) | |
target=taget.view(-1) | |
return(1-2*(input*target).sum()/(input.sum()+taget.sum()+smooth)) | |
net = UNet() | |
x = torch.randn(1, 3, 100, 100) | |
target = torch.randint(0, 2, (1, 1, 100, 100), dtype=torch.float32) | |
optimizer = torch.optim.Adam(net.parameters(), lr=1e-3) | |
criterion = nn.BCEWithLogitsLoss() | |
for epoch in range(20): | |
optimizer.zero_grad() | |
output = net(x) | |
bce_loss = criterion(output, target) | |
dice_loss = dice(output, target) | |
loss = bce_loss + dice_loss | |
loss.backward() | |
optimizer.step() | |
print('Epoch {}, loss {}, bce {}, dice {}'.format( | |
epoch, loss.item(), bce_loss.item(), dice_loss.item())) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment