Skip to content

Instantly share code, notes, and snippets.

@quickgrid
Created December 30, 2019 22:24
Show Gist options
  • Save quickgrid/2f0c61653ed996766b89c420324f735b to your computer and use it in GitHub Desktop.
Save quickgrid/2f0c61653ed996766b89c420324f735b to your computer and use it in GitHub Desktop.
CIFAR10 image classification using CNN with pytorch gpu. This is a simple network and accuracy reaches to 77% on 10 epochs.
import torch
torch.manual_seed(0)
import numpy as np
np.random.seed(0)
import random
random.seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
#torch.cudnn.benchmark = True
#torch.cudnn.enabled = True
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
if __name__ == '__main__':
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=4)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=4)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
l1 = 64
l2 = 128
l3 = 256
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# input channel, output filter, kernel size
self.conv1 = nn.Conv2d(3, l1, 5, padding=2)
self.conv2 = nn.Conv2d(l1, l2, 5, padding=2)
self.conv3 = nn.Conv2d(l2, l3, 3)
self.BatchNorm2d1 = nn.BatchNorm2d(l1)
self.BatchNorm2d2 = nn.BatchNorm2d(l2)
self.BatchNorm2d3 = nn.BatchNorm2d(l3)
self.BatchNorm2d4 = nn.BatchNorm2d(120)
self.pool = nn.MaxPool2d(2, 2)
self.dropout = nn.Dropout(p=0)
self.fc1 = nn.Linear(l3 * 3 * 3, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.BatchNorm2d1(self.pool(F.leaky_relu(self.conv1(x))))
x = self.BatchNorm2d2(self.pool(F.leaky_relu(self.conv2(x))))
x = self.BatchNorm2d3(self.pool(F.leaky_relu(self.conv3(x))))
x = x.view(-1, l3 * 3 * 3)
x = self.dropout(F.leaky_relu(self.fc1(x)))
x = self.dropout(F.leaky_relu(self.fc2(x)))
#x = self.dropout(F.leaky_relu(self.fc4(x)))
x = self.fc3(x)
return x
net = Net()
net = net.to(device)
print(net)
criterion = nn.CrossEntropyLoss()
#optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
#optimizer = optim.Adam(net.parameters(), lr=0.001)
optimizer = optim.Adam(net.parameters(), lr=0.001)
def main():
for epoch in range(5):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
dataiter = iter(testloader)
images, labels = dataiter.next()
images, labels = images.to(device), labels.to(device)
print('Ground truth: ', ' '.join('%5s' % classes[labels[j]] for j in
range(4)))
outputs = net(images)
_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]
for j in range(4)))
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
for i in range(10):
print('Accuracy of %5s : %2d %%' % (
classes[i], 100 * class_correct[i] / class_total[i]))
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment