Skip to content

Instantly share code, notes, and snippets.

@quq99
Created March 1, 2017 04:58
Show Gist options
  • Save quq99/4a07175b65eacd84cb34634a6e97c27c to your computer and use it in GitHub Desktop.
Save quq99/4a07175b65eacd84cb34634a6e97c27c to your computer and use it in GitHub Desktop.
a improved PG algorithm for Atari pong
""" Trains an agent with (stochastic) Policy Gradients on Pong. Uses OpenAI Gym. """
import numpy as np
import cPickle as pickle
import gym
import copy
# hyperparameters
H = 200 # number of hidden layer neurons
batch_size = 10 # every how many episodes to do a param update?
learning_rate = 1e-4
gamma = 0.99 # discount factor for reward
decay_rate = 0.99 # decay factor for RMSProp leaky sum of grad^2
resume = False # resume from previous checkpoint?
render = False
# model initialization
D = 80 * 80 # input dimensionality: 80x80 grid
DD = (80,80)
if resume:
model = pickle.load(open('save.p', 'rb'))
else:
model = {}
model['W1'] = np.random.randn(H,D) / np.sqrt(D) # "Xavier" initialization
model['W2'] = np.random.randn(H) / np.sqrt(H)
model['theta1'] = np.random.randn(H,D) / np.sqrt(D) # "Xavier" initialization
model['theta2'] = np.random.randn(H) / np.sqrt(H)
grad_buffer = { k : np.zeros_like(v) for k,v in model.iteritems() } # update buffers that add up gradients over a batch
rmsprop_cache = { k : np.zeros_like(v) for k,v in model.iteritems() } # rmsprop memory
def sigmoid(x):
return 1.0 / (1.0 + np.exp(-x)) # sigmoid "squashing" function to interval [0,1]
def prepro(I):
""" prepro 210x160x3 uint8 frame into 6400 (80x80) 1D float vector """
I = I[35:195] # crop
I = I[::2,::2,0] # downsample by factor of 2
I[I == 144] = 0 # erase background (background type 1)
I[I == 109] = 0 # erase background (background type 2)
I[I != 0] = 1 # everything else (paddles, ball) just set to 1
#return I.astype(np.float).ravel()
#print np.shape(I)
#print I.astype(np.float)
return I.astype(np.float)
def dealwith(iy):
iy=abs(iy)
if (iy >= 79):
iy=79-(iy-79)
if (iy <= 0):
iy=dealwith(iy)
return iy
#plot the trajectory of the ball
def traj(mat):
mattmp=copy.deepcopy(mat)
#print np.shape(mattmp)
mattmp[:,0:10]=0
mattmp[:,70:80]=0
#plt.imshow(mattmp)
#plt.show()
#find the ball
[negY,negX] = [np.argmax(np.argmax(mattmp,axis=1)), np.max(np.argmax(mattmp,axis=1))]
#print [negY,negX]
[posY,posX] = [np.argmax(np.argmin(mattmp,axis=1)), np.max(np.argmin(mattmp,axis=1))]
#print [posY,posX]
if ([posX,posY] != [0,0] and [negX,negY] != [0,0]):
if (posX > negX):
ascent=float(posY-negY) / float(posX-negX)
for i in xrange(negX+1,70):
if (i == posX):
continue
iy = int(ascent*(i-posX)+posY)
iy = dealwith(iy)
#draw the trajectory
mat[iy,i] = 0.8
elif (posX < negX):
ascent=float(posY-negY) / float(posX-negX)
for i in xrange(10,negX):
if (i == posX):
continue
iy = int(ascent*(i-posX)+posY)
iy = dealwith(iy)
mat[iy,i] = 0.8
#plt.imshow(mat)
#plt.show()
return np.ravel(mat)
def discount_rewards(r):
""" take 1D float array of rewards and compute discounted reward """
discounted_r = np.zeros_like(r)
running_add = 0
for t in reversed(xrange(0, r.size)):
if r[t] != 0: running_add = 0 # reset the sum, since this was a game boundary (pong specific!). ie, in a episode at least play 21 times.
running_add = running_add * gamma + r[t]
discounted_r[t] = running_add
return discounted_r
def policy_forward(x):
h = np.dot(model['W1'], x)
h[h<0] = 0 # ReLU nonlinearity
logp = np.dot(model['W2'], h)
p = sigmoid(logp)
return p, h # return probability of taking action 2, and hidden state
def value_forward(x):
h = np.dot(model['theta1'], x)
h[h<0] = 0 # ReLU nonlinearity
logp = np.dot(model['theta2'], h)
p = sigmoid(logp)
return p, h # return probability of taking action 2, and hidden state
def policy_backward(eph, epdlogp):
""" backward pass. (eph is array of intermediate hidden states) """
dW2 = np.dot(eph.T, epdlogp).ravel()
dh = np.outer(epdlogp, model['W2'])
dh[eph <= 0] = 0 # backpro prelu
dW1 = np.dot(dh.T, epx)
return {'W1':dW1, 'W2':dW2}
def value_backward(eph, epdp):
""" backward pass. (eph is array of intermediate hidden states) """
dtheta2 = np.dot(eph.T, epdp).ravel()
dh = np.outer(epdp, model['theta2'])
dh[eph <= 0] = 0 # backpro prelu
dtheta1 = np.dot(dh.T, epx)
return {'theta1':dtheta1, 'theta2':dtheta2}
env = gym.make("Pong-v0")
observation = env.reset()
prev_x = None # used in computing the difference frame
xs,hs,hvs,dlogps,dvs,drs = [],[],[],[],[],[]
running_reward = None
reward_sum = 0
episode_number = 0
while True:
if render: env.render()
# preprocess the observation, set input to network to be difference image
cur_x = prepro(observation)
subX = cur_x - prev_x if prev_x is not None else np.zeros(DD)
prev_x = cur_x
#print np.shape(x)
# forward the policy network and sample an action from the returned probability
#print np.shape(subX)
x=traj(subX)
aprob, h = policy_forward(x)
vs, vh = value_forward(x)
action = 2 if np.random.uniform() < aprob else 3 # roll the dice!
# record various intermediates (needed later for backprop)
xs.append(x) # observation
hs.append(h) # hidden state in policy
hvs.append(vh) # hidden state in value
y = 1 if action == 2 else 0 # a "fake label"
dlogps.append(y - aprob) # grad that encourages the action that was taken to be taken (see http://cs231n.github.io/neural-networks-2/#losses if confused)
dvs.append(vs)
# step the environment and get new measurements
observation, reward, done, info = env.step(action)
reward_sum += reward
drs.append(reward) # record reward (has to be done after we call step() to get reward for previous action)
if done: # an episode finished
episode_number += 1
# stack together all inputs, hidden states, action gradients, and rewards for this episode
epx = np.vstack(xs)
eph = np.vstack(hs)
epvh = np.vstack(hvs)
epdlogp = np.vstack(dlogps)
epdv = np.vstack(dvs)
epr = np.vstack(drs)
xs,hs,hvs,dlogps,dvs,drs = [],[],[],[],[],[] # reset array memory
# compute the discounted reward backwards through time
discounted_epr = discount_rewards(epr)
# standardize the rewards to be unit normal (helps control the gradient estimator variance)
discounted_epr -= np.mean(discounted_epr)
discounted_epr /= np.std(discounted_epr)
# randomly sample some states(give up some states), that can break the relations between every two steps.
dis=0.3
deletecount = int(dis*epx.shape[0])
deletea = np.array(epx.shape[0])
deletearraynum = np.random.choice(deletea,deletecount,replace=False)
np.delete(epx, deletearraynum, 0)
np.delete(eph, deletearraynum, 0)
np.delete(epvh, deletearraynum, 0)
np.delete(epdlogp, deletearraynum, 0)
np.delete(epdv, deletearraynum, 0)
np.delete(epr, deletearraynum, 0)
np.delete(discounted_epr, deletearraynum, 0)
epdp = (discounted_epr - epdv)*(epdv)*(1-epdv)
epdlogp = epdlogp *(discounted_epr - epdv) # modulate the gradient with advantage (PG magic happens right here.)
grad={}
grad_policy = policy_backward(eph, epdlogp)
grad_value = value_backward(epvh, epdp)
grad = dict(grad_policy,**grad_value)
for k in model: grad_buffer[k] += grad[k] # accumulate grad over batch
# perform rmsprop parameter update every batch_size episodes
if episode_number % batch_size == 0:
for k,v in model.iteritems():
g = grad_buffer[k] # gradient
rmsprop_cache[k] = decay_rate * rmsprop_cache[k] + (1 - decay_rate) * g**2
model[k] += learning_rate * g / (np.sqrt(rmsprop_cache[k]) + 1e-5)
grad_buffer[k] = np.zeros_like(v) # reset batch gradient buffer
# boring book-keeping
running_reward = reward_sum if running_reward is None else running_reward * 0.99 + reward_sum * 0.01
print 'resetting env. episode reward total was %f. running mean: %f' % (reward_sum, running_reward)
if episode_number % 100 == 0: pickle.dump(model, open('save.p', 'wb'))
reward_sum = 0
observation = env.reset() # reset env
prev_x = None
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment