Skip to content

Instantly share code, notes, and snippets.

@qzane
Created April 29, 2020 19:19
Show Gist options
  • Save qzane/fc92685edf7d926583cc0d76b9bbbb82 to your computer and use it in GitHub Desktop.
Save qzane/fc92685edf7d926583cc0d76b9bbbb82 to your computer and use it in GitHub Desktop.
Some scripts for medical image processing
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 28 14:34:17 2018
@author: qzane
"""
import os,sys
import numpy as np
import torch
from PIL import Image
import SimpleITK as sitk
def itk_nib(mat):
'''convert between SimpleITK and Nibabel format'''
mat = mat.squeeze()
return mat.transpose((2,1,0))
nib_itk = itk_nib
def itk_save(mat, file, template):
img = sitk.GetImageFromArray(mat)
img.SetDirection(template.GetDirection())
img.SetOrigin(template.GetOrigin())
img.SetSpacing(template.GetSpacing())
sitk.WriteImage(img, file)
def itk_read(file):
im = sitk.ReadImage(file)
da = sitk.GetArrayFromImage(im).squeeze()
return (im, da)
def bounding_box(mat):
''' get the bounding box of an numpy ndarray '''
index = np.array(np.where(mat>0))
maxs = index.max(1)
mins = index.min(1)
res = np.array(tuple(zip(mins, maxs)), np.int32)
return res
def hist_match(img, temp):
''' histogram matching from img to temp '''
matcher = sitk.HistogramMatchingImageFilter()
matcher.SetNumberOfHistogramLevels(1024)
matcher.SetNumberOfMatchPoints(7)
matcher.ThresholdAtMeanIntensityOn()
res = matcher.Execute(img,temp)
return res
def resize(mat, zoom=1.0, mode='AA', rotate1=0, rotate2=0):
'''mode == 'AA' /'ANTIALIAS' or 'NN' / 'NEAREST'''
mat = mat.squeeze()
dtype = mat.dtype
if mode.upper() in ('AA', 'ANTIALIAS'):
mode = Image.ANTIALIAS
mat = np.float64(mat)
elif mode.upper() in ('NN', 'NEAREST'):
mode = Image.NEAREST
mat = np.float64(mat>0)*100
else:
raise(Exception('unexpected resize mode'))
shape = mat.shape
if type(zoom) == tuple:
shape1 = (shape[0],) +zoom[1:]
shape2 = zoom
else:
shape1 = (shape[0], int(shape[1]*zoom), int(shape[2]*zoom))
shape2 = (int(shape[0]*zoom), shape1[1], shape1[2])
mat1 = np.zeros(shape1, mat.dtype)
mat2 = np.zeros(shape2, mat.dtype)
for no in range(shape[0]):
mat1[no] = np.array(Image.fromarray(mat[no]).resize(shape1[:0:-1], mode).rotate(rotate2))
for no in range(shape2[2]):
mat2[:,:,no] = np.array(Image.fromarray(mat1[:,:,no]).resize(shape2[1::-1],
mode).rotate(rotate1))
if mode == Image.NEAREST:
mat2 = (mat2 > 0)
return mat2.astype(dtype)
def resize_mask(mat, zoom=1.0,):
dtype = mat.dtype
mat = np.float32(mat)
mat = mat * 100
mat = resize(mat, zoom, 'AA')
mat = mat / 100 + 0.5
mat = mat.astype(dtype)
return mat
def fitMat(targetshape, mat, center=None, target_center=None):
''' fit the mat into targetshape
make sure the center of the origin image locat in the target_center of the new mat '''
if not isinstance(mat, np.ndarray):
raise(Exception('tensor type not supported'))
mat = mat.squeeze()
if center is None:
center = tuple(map(lambda x:x//2, mat.shape))
else:
assert(len(center)==3)
if target_center is None:
target_center = tuple(map(lambda x:x//2, targetshape))
else:
assert(len(center)==3)
c1 = target_center
c2 = center
outMat = np.zeros(targetshape, mat.dtype)
outMatSqueezed = outMat.squeeze()
r3 = (min(c1[0],c2[0]),
min(c1[1],c2[1]),
min(c1[2],c2[2]))
r4 = (min(mat.shape[0]-c2[0],targetshape[0]-c1[0]),
min(mat.shape[1]-c2[1],targetshape[1]-c1[1]),
min(mat.shape[2]-c2[2],targetshape[2]-c1[2]))
outMatSqueezed[c1[0]-r3[0]:c1[0]+r4[0],
c1[1]-r3[1]:c1[1]+r4[1],
c1[2]-r3[2]:c1[2]+r4[2]] = \
mat[c2[0]-r3[0]:c2[0]+r4[0],
c2[1]-r3[1]:c2[1]+r4[1],
c2[2]-r3[2]:c2[2]+r4[2]]
return outMat
def fitMat_test():
mat1 = np.zeros((321,345,367))
mat1[11,22,33] = 1
mat2 = fitMat((431,275,367), mat1, (11,22,33), (430, 270, 11))
where = np.where(mat2>0)
if((where[0][0]==430) and (where[1][0]==270) and (where[2][0]==11)):
return True
else:
return False
assert(fitMat_test)
def makeSlice(mat, piece, targetshape, step=32, overlap=32):
''' when piece == -1, return all mats
'''
tmpMat = fitMat(targetshape, mat)
if piece == -1: # return all mats
res = []
for x in range((targetshape[0]-overlap) // step):
for y in range((targetshape[0]-overlap) // step):
for z in range((targetshape[0]-overlap) // step):
xx = x*step
yy = y*step
zz = z*step
res.append(tmpMat[xx:xx+overlap+step,
yy:yy+overlap+step,
zz:zz+overlap+step])
return res
no = 0
for x in range((targetshape[0]-overlap) // step):
for y in range((targetshape[0]-overlap) // step):
for z in range((targetshape[0]-overlap) // step):
if no == piece:
xx = x*step
yy = y*step
zz = z*step
return tmpMat[xx:xx+overlap+step,
yy:yy+overlap+step,
zz:zz+overlap+step]
else:
no += 1
def combineSlice(mats, targetshape, step=32, overlap=32):
''' mats are probability maps '''
outMat = np.zeros(targetshape, mats[0].dtype)
countMat = np.zeros(targetshape, mats[0].dtype)
no = 0
for x in range((targetshape[0]-overlap) // step):
for y in range((targetshape[0]-overlap) // step):
for z in range((targetshape[0]-overlap) // step):
xx = x*step
yy = y*step
zz = z*step
countMat[xx:xx+overlap+step,
yy:yy+overlap+step,
zz:zz+overlap+step] += 1
outMat[xx:xx+overlap+step,
yy:yy+overlap+step,
zz:zz+overlap+step] += mats[no]
no += 1
countMat[countMat==0]=1
outMat = outMat / countMat
return outMat
def mat2tensor(im_resize, std=None):
im_resize = im_resize.squeeze()
im_resize = np.float32(im_resize)
if std is None:
std = np.where(np.isclose(im_resize,0), np.nan, im_resize)
if std == 0:
pass #im_resize = im_resize / 1
else:
im_resize = im_resize / std
#im_resize = im_resize - im_resize.mean() ##really???
#im_resize = im_resize / im_resize.std()
im_resize = torch.from_numpy(im_resize)
im_resize = im_resize.contiguous().unsqueeze(0)
return im_resize
def change_spacing(mat, old_spacing, new_spacing, itk_spacing=True):
''' resize mat so the old spacing changes to the new spacing '''
if itk_spacing:
mat_trans = mat.transpose((2,1,0)) # the order of mat and spacing is different
shape = (int(mat_trans.shape[0]*old_spacing[0]/new_spacing[0]),
int(mat_trans.shape[1]*old_spacing[1]/new_spacing[1]),
int(mat_trans.shape[2]*old_spacing[2]/new_spacing[2]))
new_mat = resize(mat_trans, shape)
if itk_spacing:
new_mat = new_mat.transpose((2,1,0)) # the order of mat and spacing is different
return new_mat
def nonzero_mean_std(mat):
''' calculate mean and std for non-zero pixels only '''
tmp = np.where(np.isclose(mat,0), np.nan, mat)
return np.nanmean(tmp), np.nanstd(tmp)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment