#Non-mathematical Introductions
- http://gcn.com/articles/2014/01/09/topographical-data-analysis.aspx
- https://www.simonsfoundation.org/quanta/20131004-the-mathematical-shape-of-things-to-come/
#Videos
# Reference: http://www.sport.gov.cn/n16/n1077/n1422/7331093.html | |
# Reference: https://en.wikipedia.org/wiki/Linear_regression#/media/File:Linear_regression.svg | |
set.seed(999) # Set seed for steady random number generator | |
sample_size_n <- 100 # number of observations to simulate | |
male_height_average <- 171.9 # Average male height (age: 20-24) | |
male_weight_average <- 67.2 # Average male weight (age: 20-24) | |
simulated_male_weights <- runif(n = sample_size_n, | |
min = male_weight_average - 23, |
# The mahalanobis_distance function is used to calculate the | |
# squared Mahalanobis distance for a given data matrix with | |
# feature means and feature variance-covariance. | |
mahalanobis_distance <- function(X_matrix, # data matrix of observations | |
mean_vector, # vector of feature means | |
variance_covariance_matrix # variance-covariance matrix of features | |
) { | |
# Helper variables | |
one_vector <- rep(1, nrow(X_matrix)) | |
mean_matrix <- as.matrix(one_vector) %*% t(as.matrix(mean_vector)) |
#Non-mathematical Introductions
#Videos
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ |