Last active
October 22, 2023 22:26
-
-
Save r98inver/c041c72140b5512c35ae348d53a4e4d4 to your computer and use it in GitHub Desktop.
CTF101 - leak (factoring with known multiple of phi)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from Crypto.Util.number import GCD, long_to_bytes as l2b | |
import random | |
n = 52883301925732518547300530023868858590931636853891275675649307100792183838996586482003865273456848522932479525234494362829984849206059984812526124129974173451230468439502215344021834912374540694716416754894463076546609884496979986021320585109396685097930385837804866215199828038329543126091147868086267601129 | |
c = 35795213814057690397775320273632131942968992738349383455337416077120407224955930692779895141053824535029278792900544351786937759171849289796443513835057906273728946502669880416539370625985006208820280189553065500776676738701830454643998896534770514277496736350309310273306346714823731515132116960620058213700 | |
leak_1 = 41788445330683886891197496562620157902949045870768970306080181162241014272216248767657126454723123373089846438219000191127720250796774663957331429054018519216129081868461359983069808084619947413259057236923756018306043112815471563321457359549156144621650815011995585224318715511493405758290851942797071849265341706822107022181301470803041818658707280424713681576728430835872974055184929558642040597704136594200874455643305910994725736823351330560740392260072264380485 | |
leak_2 = 24492347282010171320763575568480220238915541185004042319592864577890784596518564165635275919873196349153961995204383165443322242559938394792528813268882625463235131309444057771894562225483771518637308659854005591412879867219116171052057598084852986554605066094456583889152164817806764413259716750228238738127704980229426070377501075564701953420471423869093175303487080779506680719557296435483944189196135013118198819001008773418481679649568503001232667757742780750847 | |
# Get back the leak | |
leak = -1 | |
for k1 in range(21, 43): | |
for k2 in range(21, 43): | |
y = GCD(leak_1 - k1, leak_2 - k2) | |
if y > (2 << 10): | |
print(f'{k1 = } {k2 = }') | |
leak = y | |
print(f'{leak = }') | |
# Factor knowing a multiple of phi (https://math.stackexchange.com/questions/12328/rsa-fast-factorization-of-n-if-d-and-e-are-known) | |
def find_factor(ed, n): | |
h = ed # ed is e*d - 1 (or any multiple of phi) | |
while h % 2 == 0: | |
h = h // 2 | |
h = int(h) | |
for cnt in range(100): | |
print(f'{cnt = }') | |
a = random.randint(2, n-2) | |
g = GCD(a, n) | |
if g != 1: | |
print(f'{g = }') | |
return g | |
b = pow(a, h, n) | |
while True: | |
g = GCD(b-1, n) | |
if g == 1: | |
b = pow(b, 2, n) | |
continue | |
if g == n: | |
break | |
print(f'{g = }') | |
return g | |
p = find_factor(leak, n) | |
q = n // p | |
e = 65537 | |
phi = (p-1)*(q-1) | |
d = pow(e, -1, phi) | |
m = pow(c, d, n) | |
print(f'{l2b(m) = }') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment