Created
June 20, 2019 19:29
-
-
Save radekosmulski/adc82cdcbd486b027e389d8b97e7e12f to your computer and use it in GitHub Desktop.
training on CIFAR10 using fastai from the command line
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import fire | |
import fastai | |
from fastai.vision import * | |
from torch import nn | |
from fastai.metrics import top_k_accuracy | |
path = untar_data(URLs.CIFAR) | |
data = ImageDataBunch.from_folder(path, valid='test') | |
class block(nn.Module): | |
def __init__(self, n_in, n_out, two_d=True): | |
super().__init__() | |
self.op = nn.Conv2d(n_in, n_out, 3) if two_d else nn.Linear(n_in, n_out) | |
self.bn = nn.BatchNorm2d(n_out) if two_d else nn.BatchNorm1d(n_out) | |
def forward(self, x): | |
x = self.op(x) | |
x = F.relu(x) | |
x = self.bn(x) | |
return x | |
arch = SequentialEx( | |
block(3,32), | |
block(32,32), | |
nn.MaxPool2d(2), | |
block(32,32), | |
block(32,32), | |
nn.MaxPool2d(2), | |
Flatten(), | |
block(800, 800, False), | |
block(800, 800, False), | |
nn.Linear(800, 10) | |
) | |
def top_3_accuracy(preds, targs): return top_k_accuracy(preds, targs, 3) | |
learn = Learner(data, arch, metrics=[accuracy, top_3_accuracy]) | |
def train(epochs=3, max_lr=1e-3, find_lr=False, plot_losses=False, save_model=False): | |
if find_lr: | |
learn.lr_find() | |
fig = learn.recorder.plot(return_fig=True) | |
fig.savefig('lr_find.png') | |
learn.fit_one_cycle(epochs, max_lr) | |
if plot_losses: | |
fig = learn.recorder.plot_losses(return_fig=True) | |
fig.savefig('losses.png') | |
if save_model: | |
loss, top_1, top_3 = learn.validate() | |
learn.save(f'{epochs}_{max_lr}_{loss:.2f}_{top_1:.2f}_{top_3:.2f}') | |
if __name__ == '__main__': | |
fire.Fire(train) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment