Skip to content

Instantly share code, notes, and snippets.

@rafaelnovello
Created June 27, 2019 22:37
Show Gist options
  • Save rafaelnovello/e8d843f3a135db436175cd505a0a9cff to your computer and use it in GitHub Desktop.
Save rafaelnovello/e8d843f3a135db436175cd505a0a9cff to your computer and use it in GitHub Desktop.
Marvin Engine Example Code
// Data Acquisitor
from marvin_python_toolbox.common.data import MarvinData
import pandas as pd
file_path = MarvinData.download_file(url="https://s3.amazonaws.com/marvin-engines-data/Iris.csv")
iris = pd.read_csv(file_path)
iris.drop('Id',axis=1,inplace=True)
marvin_initial_dataset = iris
// Training Preparator
from sklearn.cross_validation import train_test_split
train, test = train_test_split(marvin_initial_dataset, test_size = 0.3)
train_X = train[['SepalLengthCm','SepalWidthCm','PetalLengthCm','PetalWidthCm']]
train_y = train.Species
test_X = test[['SepalLengthCm','SepalWidthCm','PetalLengthCm','PetalWidthCm']]
test_y =test.Species
marvin_dataset = {'train_X': train_X, 'train_y': train_y, 'test_X': test_X, 'test_y': test_y}
// Model Traning
from sklearn import svm
clf = svm.SVC()
model = clf.fit(marvin_dataset['train_X'], marvin_dataset['train_y'])
marvin_model = model
// Model Evaluation
from sklearn.metrics import accuracy_score
predicted = marvin_model.predict(marvin_dataset['test_X'])
metric = accuracy_score(marvin_dataset['test_y'], predicted)
marvin_metrics = metric
// Prediction Preparator
input_message = ['12', '34', '10', '23']
// Predictor
final_prediction = marvin_model.predict(input_message)[0]
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment