Skip to content

Instantly share code, notes, and snippets.

@rahulnair23
Created May 6, 2021 16:47
Show Gist options
  • Save rahulnair23/b3be98553df6637f7b7fd4490e80991d to your computer and use it in GitHub Desktop.
Save rahulnair23/b3be98553df6637f7b7fd4490e80991d to your computer and use it in GitHub Desktop.
Set partitioning problem
"""
Integer program for set partitioning
"""
# %%
import cplex
import random
from typing import List, Tuple
import string
X = list(string.ascii_lowercase)
eps = 10e-6
# Cost function
def cost(k: List) -> float: return 1.0
# label for a set
def func(x) -> str: return "".join(x)
# Reduced cost calculation
def rc(e, pi, X): return cost(e) + sum([p for p, x in zip(pi, X) if x in e])
def master(X: List, K: List[List]) -> cplex.Cplex:
""" Restricted master problem """
prob = cplex.Cplex()
numvar = len(K)
names = list(map(func, K))
var_type = [prob.variables.type.continuous] * numvar
prob.variables.add(names=names,
lb=[0.0] * numvar,
ub=[1.0] * numvar,
types=var_type)
prob.objective.set_sense(prob.objective.sense.minimize)
prob.objective.set_linear([(n, cost(kj)) for n, kj in zip(names, K)])
lhs = []
for i in X:
coeffs = [1.0 if i in kj else 0.0 for kj in K]
lhs.append(cplex.SparsePair(names, coeffs))
prob.linear_constraints.add(lin_expr=lhs,
rhs=[1.0] * len(lhs),
senses=['E'] * len(lhs),
names=X)
prob.set_problem_type(cplex.Cplex.problem_type.LP)
print(f"{len(lhs)} constraints and {len(names)} variables.")
return prob
def pricing(X: List, pi: List, ncols: int=5) -> Tuple[List, float]:
""" Heuristic to generate new partitions """
# ordered set of elements that have positive dual variables
K_new = [x for p, x in sorted(zip(pi, X), reverse=True) if p < 0.0]
# reduced cost of new partition
rc_new = rc(K_new, pi, X)
return sorted(K_new), rc_new
# Initial partitions to start with
K = [X[i:i + 10] for i in range(0, len(X), 10)]
p = master(X, K)
_ = p.set_log_stream(None)
_ = p.set_results_stream(None)
# %% The main column generation procedure
i, maxiter = 0, 1000
while (i< maxiter):
p.solve()
pi = [-p for p in p.solution.get_dual_values()]
# Generate new partitions/columns
K_new, rc_new = pricing(X, pi)
# generate new column
if rc_new <= -eps:
# add the columns to the problem (if they don't exist already)
names = p.variables.get_names()
newvar = func(K_new)
if newvar not in names:
print(f"Iteration {i}: Adding '{''.join(K_new)}' column with rc: {rc_new}.")
p.variables.add(names=[newvar],
lb=[0.0], ub=[1.0],
types=[p.variables.type.continuous])
p.objective.set_linear(newvar, cost(K_new))
for c in K_new:
p.linear_constraints.set_coefficients(str(c), newvar, 1.0)
p.set_problem_type(cplex.Cplex.problem_type.LP)
i+=1
else:
print("No improvement partition found - Terminating column generation.")
break
# Do the final (integer) solve
names = p.variables.get_names()
p.variables.set_types(list(zip(names, [p.variables.type.binary] * len(names))))
#p.write("test.lp")
p.solve()
if p.solution.get_status() in [101, 102, 105, 107, 111, 113]:
x_opt = p.solution.get_values()
print(f"Optimal value: {p.solution.get_objective_value()}")
for vr, val in zip(names, x_opt):
if val >=1-eps:
s = list(vr)
print(f"Partition: '{''.join(s)}' with cost: {cost(s)}.")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment