Interview Process Structure
- Assessment Test
- Format: Easy-level LeetCode-style questions (typically 2).
- Environment: Virtually proctored through webcam.
- Difficulty: Mostly straightforward coding problems.
- Main Rounds
Round 1: Coding Interview
Interview Process Structure
Round 1: Coding Interview
/train/n02112137/n02112137_3351.JPEG 96 | |
/train/n02112137/n02112137_14715.JPEG 96 | |
/train/n02112137/n02112137_8996.JPEG 96 | |
/train/n02112137/n02112137_8952.JPEG 96 | |
/train/n02112137/n02112137_482.JPEG 96 | |
/train/n02112137/n02112137_2023.JPEG 96 | |
/train/n02112137/n02112137_10146.JPEG 96 | |
/train/n02112137/n02112137_13505.JPEG 96 | |
/train/n02112137/n02112137_6212.JPEG 96 | |
/train/n02112137/n02112137_9200.JPEG 96 |
def fine_labels(): | |
fine_labels = [ | |
'apple', # id 0 | |
'aquarium_fish', | |
'baby', | |
'bear', | |
'beaver', | |
'bed', | |
'bee', | |
'beetle', |
# ======================================================================================================================== | |
import openai | |
openai.api_key = | |
# ======================================================================================================================== | |
# >>> len(a[31:60]), len(a[60:]) | |
# (29, 40) | |
import os | |
from tqdm import tqdm, trange |
import torchvision | |
model_conv = torchvision.models.resnet18(pretrained=True) | |
for name, param in model_conv.named_parameters(): | |
if not("fc" in name): | |
param.requires_grad = False | |
print(name, param.requires_grad) |
# From Polyfjord - https://youtu.be/Q9IRHmfGDrU?t=17 | |
names = ["gold", | |
"chilli_pepper", | |
"crystal_blue", | |
"aquamarine", | |
"army_green", | |
"neon_yellow", | |
"caramel", | |
"pumpkin_orange", |
import pprint as pp | |
fine_labels = [ | |
'apple', # id 0 | |
'aquarium_fish', | |
'baby', | |
'bear', | |
'beaver', | |
'bed', | |
'bee', |
gpustat --watch
to find the usage), PLEASE DONT RUN ON IT. This will crash the other person's runs.