Created
February 19, 2013 10:33
Programa para detectar formas después de la detección de bordes
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from Tkinter import * | |
import sys, os, random, Image, ImageTk | |
from filters_methods import * | |
class Forms: | |
def __init__(self, image_file_path): | |
self.image_file_path = image_file_path | |
image = self.open_image(self.image_file_path) | |
self.temp_image = image | |
self.root = Tk() | |
self.root.title('Forms') | |
self.root.resizable(width=False, height=False) | |
self.imagetk = self.convert_to_imagetk(image) | |
self.label1 = Label(self.root, image=self.imagetk) | |
self.label1.pack(side=LEFT) | |
self.button1 = Button(text='Reset', width=10, | |
command=self.reset_image).pack() | |
self.button2 = Button(text='Forms', width=10, | |
command=self.action).pack() | |
self.button_exit = Button(text='Exit', width=10, | |
command=self.root.destroy).pack() | |
self.root.mainloop() | |
def open_image(self, image_file_path): | |
image = Image.open(image_file_path) | |
image.thumbnail((800, 800), Image.ANTIALIAS) | |
return image | |
def save_image(self, image, width, height): | |
pixels = image.getdata() | |
newimage = Image.new('RGB', (width, height)) | |
newimage.putdata(pixels) | |
newimage.save('output.jpg') | |
def convert_to_imagetk(self, image): | |
return ImageTk.PhotoImage(image) | |
def reset_image(self): | |
image = self.open_image(self.image_file_path) | |
self.update_image(image) | |
def update_image(self, image): | |
self.imagetk = self.convert_to_imagetk(image) | |
self.label1.config(image=self.imagetk) | |
self.label1.pack() | |
self.root.mainloop() | |
def convolution(self, h, f): | |
F = self.open_image(self.image_file_path) | |
width, height = get_image_size(F) | |
k = len(h[1]) | |
for x in range(width): | |
for y in range(height): | |
suma = 0 | |
for i in range(k): | |
z1 = i - k/2 | |
for j in range(k): | |
z2 = j - k/2 | |
try: | |
suma += f.getpixel((x+z1, y+z2))[0]*h[i][j] | |
except: | |
pass | |
suma = int(suma) | |
F.putpixel((x, y), (suma, suma, suma)) | |
return F | |
def bfs(self, image, start_pixel_pos, color): | |
pixels = image.load() | |
width, height = get_image_size(image) | |
queue = [] | |
count = 0 | |
queue.append(start_pixel_pos) | |
original = pixels[start_pixel_pos] | |
while 0 < len(queue): | |
(x, y) = queue.pop(0) | |
current = pixels[x, y] | |
if current == original or current == color: | |
for pos_x in [-1, 0, 1]: | |
for pos_y in [-1, 0, 1]: | |
pixel_x = x + pos_x | |
pixel_y = y + pos_y | |
if pixel_x >= 0 and pixel_x < width and pixel_y >= 0 and pixel_y < height: | |
pixel_data = pixels[pixel_x, pixel_y] | |
if pixel_data == original: | |
pixels[pixel_x, pixel_y] = color | |
image.putpixel((pixel_x, pixel_y), color) | |
queue.append((pixel_x, pixel_y)) | |
count += 1 | |
return image, count | |
def detect_background(self, image, color): | |
pixels = image.load() | |
width, height = get_image_size(image) | |
for i in range(width): | |
for j in range(height): | |
if pixels[i, j] == color: | |
image, count = self.bfs(image, (i, j), (150, 150, 150)) | |
return image | |
def detect_forms(self, image): | |
pixels = image.load() | |
width, height = get_image_size(image) | |
percentages = [] | |
all_colors = [] | |
for i in range(width): | |
for j in range(height): | |
if pixels[i, j] == (0, 0, 0): | |
r = int(random.random() * 80) | |
g = int(random.random() * 190) | |
b = int(random.random() * 255) | |
image, count = self.bfs(image, (i, j), (r, g, b)) | |
per = float(count)/float(width * height) | |
percentages.append(per) | |
all_colors.append((r, g, b)) | |
pixels = image.load() | |
big_form = max(percentages) | |
ix = percentages.index(big_form) | |
image = self.detect_background(image, all_colors[ix]) | |
return image | |
def action(self): | |
f = self.open_image(self.image_file_path) | |
f = grayscale(f) | |
h = [[0, 1, 0], [1, -4, 1], [0, 1, 0]] | |
image = self.convolution(h, f) | |
image = average_allneighbors(image) | |
image = binarization(image, 18) | |
image = self.detect_forms(image) | |
self.update_image(image) | |
def main(): | |
if len(sys.argv) > 0: | |
image_file_path = sys.argv[1] | |
if os.path.isfile(image_file_path): | |
Forms(image_file_path) | |
else: | |
print 'Image file does not exist' | |
else: | |
print 'First parameter must be an image file name' | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment