This document contains lessons learned with regard to Databricks programming, but also contains some best practices
blobname = "miraw"
storageaccount = "rdmidlgen2"
mountname = "/rdmi"
configs = {"fs.azure.account.auth.type": "OAuth",
#!/bin/bash | |
set -euo pipefail | |
# This script sends a request to the OpenAI completions endpoint and parses the output using jq. | |
# It is recommended that the API key is stored in an environment variable. | |
usage() { | |
echo "Usage: $0 [-k OPENAI_API_KEY] [-m MODEL] [-t MAX_TOKENS] PROMPT" | |
echo "Example: $0 -m text-davinci-002 -t 500 \"What is the capital of France?\"" |
"""Web config to run MyGeneset API on GitHub Actions""" | |
import os | |
ES_INDEX = 'user_genesets' | |
COOKIE_SECRET = "JKA#9%Wc4ofuqM@C!&yLFsYE" | |
# ORCID keys | |
ORCID_CLIENT_ID = os.environ['ORCID_CLIENT_ID'] |
#!/bin/bash | |
# Genesets aggregated by taxid | |
aggs=`curl -s "https://mygeneset.info/v1/query?q=*&facets=taxid&facet_size=100"` | |
taxids=`echo $aggs | jq -r '.facets.taxid.terms | map(.term) | @csv'` | |
counts=`echo $aggs | jq -r '.facets.taxid.terms | map(.count) | @csv'` | |
# Query scientific name for each taxid | |
resp=`curl -s -X POST -d "q=${taxids}" "http://t.biothings.io/v1/query"` | |
species=`echo $resp | jq -r 'map(.scientific_name) | @csv'` |
#!/usr/bin/env bash | |
set -Eeuo pipefail | |
cd "$(dirname "${BASH_SOURCE[0]}")" >/dev/null 2>&1 | |
trap cleanup SIGINT SIGTERM ERR EXIT | |
usage() { | |
cat <<EOF |
This document contains lessons learned with regard to Databricks programming, but also contains some best practices
blobname = "miraw"
storageaccount = "rdmidlgen2"
mountname = "/rdmi"
configs = {"fs.azure.account.auth.type": "OAuth",
#!/usr/bin/env python | |
# Sequence alignment using PyMOL | |
# The purpose of this script is to generate a sequence alignment between | |
# the original crystal structure of the apo and holo models, and the sequence | |
# of the finalised, ungapped Rosetta models. This allows us to get a 1 to 1 | |
# corresponcence between the residue numberings in both structures. | |
# USAGE: Run once from the project root. | |
# "pockets.csv" contains the information about apo holo pairs. |
def flatten_json(y): | |
out = {} | |
def flatten(x, name=''): | |
if type(x) is dict: | |
for a in x: | |
flatten(x[a], name + a + '_') | |
elif type(x) is list: | |
i = 0 | |
for a in x: |
# List unique values in a DataFrame column | |
pd.unique(df.column_name.ravel()) | |
# Convert Series datatype to numeric, getting rid of any non-numeric values | |
df['col'] = df['col'].astype(str).convert_objects(convert_numeric=True) | |
# Grab DataFrame rows where column has certain values | |
valuelist = ['value1', 'value2', 'value3'] | |
df = df[df.column.isin(valuelist)] |