Last active
February 23, 2021 21:50
-
-
Save rcamilo1526/78c38d74ff8b8284ca4ac5912dcf26b0 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from PIL import Image | |
import os | |
import numpy as np | |
import pathlib | |
def prepare_tif(path,output,img_height,img_widht,it='tif'): | |
images = [] | |
labels = [] | |
categories = os.listdir(path) | |
print(categories) | |
for c in categories: | |
data_dir = pathlib.Path(os.path.join(path,c)) | |
tif_data = list(data_dir.glob(f'./*.{it}')) | |
for image in tif_data: | |
im = Image.open(str(image)) | |
imarray = np.array(im) | |
imarray = np.reshape(imarray,(img_height,img_widht,1)) | |
images.append(imarray) | |
labels.append(c) | |
print(f"Founded {len(images)} images from {len(set(labels))} classes") | |
encoded = np.zeros((len(labels), 9)) | |
encoding = dict(zip(np.unique(labels),range(len(np.unique(labels))))) | |
for i in range(len(encoded)): | |
position = encoding[labels[i]] | |
encoded[i][position] = 1 | |
np.savez_compressed(output+'.npz', x=np.array(images), y=np.array(encoded)) | |
""" Example: use in keras | |
prepare_tif('images/train',output='images_np/train',img_height=200,img_widht=200) | |
prepare_tif('images/val',output='images_np/val',img_height=200,img_widht=200) | |
train_data = np.load('images_np/train.npz') | |
val_data = np.load('images_np/val.npz') | |
X = train_data['x'] | |
y = train_data['y'] | |
X_val = val_data['x'] | |
y_val = val_data['y'] | |
num_classes = len(y[0]) | |
batch_size = 32 | |
step_size_train = len(X)/batch_size | |
step_size_val = len(X_val)/batch_size | |
model = Sequential() | |
# create model with some layers | |
model.add(Conv2D(32, (3, 3), padding='same', input_shape=(200, 200,1), activation='relu')) | |
... | |
... | |
... | |
... | |
... | |
model.add(Dense(num_classes, activation='softmax')) | |
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy']) | |
history = model.fit(X,y, | |
steps_per_epoch = step_size_train, | |
validation_data = (X_val,y_val), | |
validation_steps = step_size_val, | |
epochs=50) | |
""" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment