Created
April 25, 2023 19:14
-
-
Save recoilme/c04db1d9a83358c6cdbadf18026df048 to your computer and use it in GitHub Desktop.
dirty fix for m1 ToMeSD https://github.com/dbolya/tomesd/issues/18
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from typing import Tuple, Callable | |
def do_nothing(x: torch.Tensor, mode:str=None): | |
return x | |
def mps_gather_workaround(input, dim, index): | |
if input.shape[-1] == 1: | |
return torch.gather( | |
input.unsqueeze(-1), | |
dim - 1 if dim < 0 else dim, | |
index.unsqueeze(-1) | |
).squeeze(-1) | |
else: | |
return torch.gather(input, dim, index) | |
def bipartite_soft_matching_random2d(metric: torch.Tensor, | |
w: int, h: int, sx: int, sy: int, r: int, | |
no_rand: bool = False) -> Tuple[Callable, Callable]: | |
""" | |
Partitions the tokens into src and dst and merges r tokens from src to dst. | |
Dst tokens are partitioned by choosing one randomy in each (sx, sy) region. | |
Args: | |
- metric [B, N, C]: metric to use for similarity | |
- w: image width in tokens | |
- h: image height in tokens | |
- sx: stride in the x dimension for dst, must divide w | |
- sy: stride in the y dimension for dst, must divide h | |
- r: number of tokens to remove (by merging) | |
- no_rand: if true, disable randomness (use top left corner only) | |
""" | |
B, N, _ = metric.shape | |
if r <= 0: | |
return do_nothing, do_nothing | |
gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather | |
with torch.no_grad(): | |
hsy, wsx = h // sy, w // sx | |
# For each sy by sx kernel, randomly assign one token to be dst and the rest src | |
if no_rand: | |
rand_idx = torch.zeros(hsy, wsx, 1, device=metric.device, dtype=torch.int32) | |
else: | |
rand_idx = torch.randint(sy*sx, size=(hsy, wsx, 1), device=metric.device, dtype=torch.int32) | |
# The image might not divide sx and sy, so we need to work on a view of the top left if the idx buffer instead | |
idx_buffer_view = torch.zeros(hsy, wsx, sy*sx, device=metric.device, dtype=torch.int32) | |
idx_buffer_view.scatter_(dim=2, index=rand_idx.to(torch.int64), src=-torch.ones_like(rand_idx, dtype=torch.int32)) | |
idx_buffer_view = idx_buffer_view.view(hsy, wsx, sy, sx).transpose(1, 2).reshape(hsy * sy, wsx * sx) | |
# Image is not divisible by sx or sy so we need to move it into a new buffer | |
if (hsy * sy) < h or (wsx * sx) < w: | |
idx_buffer = torch.zeros(h, w, device=metric.device, dtype=torch.int32) | |
idx_buffer[:(hsy * sy), :(wsx * sx)] = idx_buffer_view | |
else: | |
idx_buffer = idx_buffer_view | |
# We set dst tokens to be -1 and src to be 0, so an argsort gives us dst|src indices | |
rand_idx = idx_buffer.reshape(1, -1, 1).argsort(dim=1) | |
# We're finished with these | |
del idx_buffer, idx_buffer_view | |
# rand_idx is currently dst|src, so split them | |
num_dst = hsy * wsx | |
a_idx = rand_idx[:, num_dst:, :] # src | |
b_idx = rand_idx[:, :num_dst, :] # dst | |
def split(x): | |
C = x.shape[-1] | |
src = gather(x, dim=1, index=a_idx.expand(B, N - num_dst, C)) | |
dst = gather(x, dim=1, index=b_idx.expand(B, num_dst, C)) | |
return src, dst | |
# Cosine similarity between A and B | |
metric = metric / metric.norm(dim=-1, keepdim=True) | |
a, b = split(metric) | |
scores = a @ b.transpose(-1, -2) | |
# Can't reduce more than the # tokens in src | |
r = min(a.shape[1], r) | |
# Find the most similar greedily | |
node_max, node_idx = scores.max(dim=-1) | |
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None] | |
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens | |
src_idx = edge_idx[..., :r, :] # Merged Tokens | |
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx) | |
def merge(x: torch.Tensor, mode="mean") -> torch.Tensor: | |
src, dst = split(x) | |
n, t1, c = src.shape | |
unm = gather(src, dim=-2, index=unm_idx.expand(n, t1 - r, c)) | |
src = gather(src, dim=-2, index=src_idx.expand(n, r, c)) | |
dst = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode) | |
return torch.cat([unm, dst], dim=1) | |
def unmerge(x: torch.Tensor) -> torch.Tensor: | |
unm_len = unm_idx.shape[1] | |
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :] | |
_, _, c = unm.shape | |
src = gather(dst, dim=-2, index=dst_idx.expand(B, r, c)) | |
# Combine back to the original shape | |
out = torch.zeros(B, N, c, device=x.device, dtype=x.dtype) | |
out.scatter_(dim=-2, index=b_idx.expand(B, num_dst, c), src=dst) | |
out.scatter_(dim=-2, index=gather(a_idx.expand(B, a_idx.shape[1], 1), dim=1, index=unm_idx).expand(B, unm_len, c), src=unm) | |
out.scatter_(dim=-2, index=gather(a_idx.expand(B, a_idx.shape[1], 1), dim=1, index=src_idx).expand(B, r, c), src=src) | |
return out | |
return merge, unmerge |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment