Created
May 8, 2017 17:33
-
-
Save reddragon/8a5cda475942c165575bfa4f58c0c5db to your computer and use it in GitHub Desktop.
CartPole for the OpenAI gym using Policy Gradients
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import gym | |
import logging | |
import sys | |
import numpy as np | |
from gym import wrappers | |
import torch | |
import torchvision | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchvision.transforms as transforms | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import torch.optim as optim | |
import matplotlib.image as mpimg | |
import cPickle as pickle | |
import os | |
from math import sqrt, ceil | |
from torch.autograd import Variable | |
class Net(nn.Module): | |
def __init__(self): | |
super(Net, self).__init__() | |
self.fc1 = nn.Linear(4, 50) | |
self.fc2 = nn.Linear(50, 100) | |
self.fc3 = nn.Linear(100, 1) | |
def forward(self, x): | |
x = (self.fc1(x)) | |
x = self.fc2(x) | |
x = self.fc3(x) | |
return F.sigmoid(x) | |
def get_action(net, input): | |
prob = net(input).data.numpy()[0][0] | |
x = np.random.uniform() | |
# print x, prob | |
if x > prob: | |
return 0, prob | |
return 1, prob | |
def save(net, optimizer, epoch): | |
state = { | |
'state_dict': net.state_dict(), | |
'optimizer': optimizer.state_dict(), | |
'epoch': epoch, | |
} | |
print ("Saving checkpoint to file '{}'" . format(CHECKPOINT_FILE_PATH)) | |
torch.save(state, CHECKPOINT_FILE_PATH) | |
CHECKPOINT_FILE_PATH = 'rl_ckpt' | |
NUM_EPISODES = 1000 | |
MIN_ITERS = 100 | |
LEARNING_RATE = 0.0025 | |
GAMMA = 0.99 | |
# Returns net, optimizer, epoch | |
def load(): | |
net = Net() | |
# optimizer = optim.RMSprop(net.parameters(), lr=LEARNING_RATE, momentum=0.5) | |
optimizer = optim.Adam(net.parameters(), lr=LEARNING_RATE) | |
epoch = 0 | |
if os.path.isfile(CHECKPOINT_FILE_PATH): | |
print ("Loading checkpoint from file '{}'" . format(CHECKPOINT_FILE_PATH)) | |
checkpoint = torch.load(CHECKPOINT_FILE_PATH) | |
epoch = checkpoint['epoch'] | |
net.load_state_dict(checkpoint['state_dict']) | |
optimizer.load_state_dict(checkpoint['optimizer']) | |
return net, optimizer, epoch | |
# Boiler plate to get a gym object | |
def get_gym(record=False, outdir='rl-data'): | |
gym.undo_logger_setup() | |
logger = logging.getLogger() | |
formatter = logging.Formatter('[%(asctime)s] %(message)s') | |
handler = logging.StreamHandler(sys.stderr) | |
handler.setFormatter(formatter) | |
logger.addHandler(handler) | |
# You can set the level to logging.DEBUG or logging.WARN if you | |
# want to change the amount of output. | |
logger.setLevel(logging.INFO) | |
outdir = 'rl-data' | |
env = gym.make('CartPole-v0') | |
if record: | |
env = wrappers.Monitor(env, directory=outdir, force=True) | |
return env | |
def discounted_rewards(r): | |
r = np.array(r) | |
discounted_r = np.zeros_like(r) | |
running_add = 0 | |
for t in reversed(xrange(0, r.size)): | |
running_add = running_add * GAMMA + r[t] | |
discounted_r[t] = running_add | |
return discounted_r | |
# return list(reversed([y*(GAMMA**idx) for idx,y in enumerate(reversed(rewards))])) | |
env = get_gym() | |
env = get_gym(record=True) | |
# env.seed(1234) | |
net, optimizer, episode = load() | |
# net = Net() | |
episode = 0 | |
# optimizer = optim.Adam(net.parameters(), lr=0.005) | |
while episode < NUM_EPISODES: | |
obs = env.reset() | |
running_reward = 0 | |
rewards = [] | |
actions = [] | |
obs_inps = [] | |
outs = [] | |
num_steps = 0 | |
while True: | |
num_steps = num_steps + 1 | |
obs_np = np.expand_dims(np.array(obs), axis=0) | |
input_var = Variable(torch.Tensor(obs_np)) | |
action, prob = get_action(net, input_var) | |
obs_inps.append(obs) | |
outs.append(prob) | |
obs, reward, done, _ = env.step(action) | |
running_reward += reward | |
rewards.append(running_reward) | |
actions.append(action) | |
if done: | |
disc_rewards = np.array(discounted_rewards(rewards)) | |
# print disc_rewards | |
steps = len(actions) | |
actions_var = Variable(torch.Tensor(actions)) | |
rewards_var = Variable(torch.Tensor(disc_rewards)) | |
optimizer.zero_grad() | |
obs_inps = np.array(obs_inps) | |
input_var = Variable(torch.Tensor(obs_inps)) | |
outs_var = net(input_var) | |
# print 'Inps: ', obs_inps | |
outs = np.array(outs).reshape(-1, 1) | |
# print outs_var.data.numpy() | |
# print outs | |
print actions | |
# print outs_var.data.numpy() == outs | |
loss =\ | |
-( | |
disc_rewards * | |
( | |
(1 - actions_var) * torch.log(1 - outs_var) + | |
(actions_var) * torch.log(outs_var) + | |
0 * (1 - actions_var) * torch.log(1-outs_var) + | |
0 * (actions_var) * torch.log(outs_var) | |
) | |
).sum() * 1.0 / steps | |
print episode, loss.data.numpy()[0], num_steps | |
loss.backward() | |
optimizer.step() | |
# print rewards | |
# print discounted_rewards(rewards) | |
# print outs | |
num_steps = 0 | |
break | |
if episode % 25 == 0: | |
save(net, optimizer, episode) | |
episode = episode + 1 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment