Skip to content

Instantly share code, notes, and snippets.

@rentrop
Last active December 3, 2023 06:01
Show Gist options
  • Save rentrop/d39a8406ad8af2a1066c to your computer and use it in GitHub Desktop.
Save rentrop/d39a8406ad8af2a1066c to your computer and use it in GitHub Desktop.
This function plots a QQplot as ggplot in R - Parts of the code copied from `car:::qqPlot`
gg_qq <- function(x, distribution = "norm", ..., line.estimate = NULL, conf = 0.95,
labels = names(x)){
q.function <- eval(parse(text = paste0("q", distribution)))
d.function <- eval(parse(text = paste0("d", distribution)))
x <- na.omit(x)
ord <- order(x)
n <- length(x)
P <- ppoints(length(x))
df <- data.frame(ord.x = x[ord], z = q.function(P, ...))
if(is.null(line.estimate)){
Q.x <- quantile(df$ord.x, c(0.25, 0.75))
Q.z <- q.function(c(0.25, 0.75), ...)
b <- diff(Q.x)/diff(Q.z)
coef <- c(Q.x[1] - b * Q.z[1], b)
} else {
coef <- coef(line.estimate(ord.x ~ z))
}
zz <- qnorm(1 - (1 - conf)/2)
SE <- (coef[2]/d.function(df$z)) * sqrt(P * (1 - P)/n)
fit.value <- coef[1] + coef[2] * df$z
df$upper <- fit.value + zz * SE
df$lower <- fit.value - zz * SE
if(!is.null(labels)){
df$label <- ifelse(df$ord.x > df$upper | df$ord.x < df$lower, labels[ord],"")
}
p <- ggplot(df, aes(x=z, y=ord.x)) +
geom_point() +
geom_abline(intercept = coef[1], slope = coef[2]) +
geom_ribbon(aes(ymin = lower, ymax = upper), alpha=0.2)
if(!is.null(labels)) p <- p + geom_text( aes(label = label))
print(p)
coef
}
Animals2 <- data(Animals2, package = "robustbase")
mod.lm <- lm(log(Animals2$brain) ~ log(Animals2$body))
x <- rstudent(mod.lm)
gg_qq(x)
# See http://stackoverflow.com/questions/4357031/qqnorm-and-qqline-in-ggplot2/#27191036
@lkreft
Copy link

lkreft commented Mar 20, 2017

You might want to add the ellipsis to the call of the d-function, too.

line 21:
SE <- (coef[2]/d.function(df$z)) * sqrt(P * (1 - P)/n)

to
SE <- (coef[2]/d.function(df$z, ...)) * sqrt(P * (1 - P)/n)

Currently, either the evaluation fails because of missing arguments or the confidence intervals are messed up for distributions like weibull, gamma, or lnorm.

@bravo-diego
Copy link

These confidence intervals are based on the approach of John Fox in Applied Regression Analysis book?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment