Skip to content

Instantly share code, notes, and snippets.

@reymon359
Created April 30, 2019 12:08
Show Gist options
  • Save reymon359/f496de29a42dc326f5ec636d264486f0 to your computer and use it in GitHub Desktop.
Save reymon359/f496de29a42dc326f5ec636d264486f0 to your computer and use it in GitHub Desktop.
# IMPORT STATEMENTS AND VARIABLE DECLARATIONS:
import random
suits = ('Hearts', 'Diamonds', 'Spades', 'Clubs')
ranks = ('Two', 'Three', 'Four', 'Five', 'Six', 'Seven', 'Eight', 'Nine', 'Ten', 'Jack', 'Queen', 'King', 'Ace')
values = {'Two':2, 'Three':3, 'Four':4, 'Five':5, 'Six':6, 'Seven':7, 'Eight':8,
'Nine':9, 'Ten':10, 'Jack':10, 'Queen':10, 'King':10, 'Ace':11}
playing = True
# CLASS DEFINTIONS:
class Card:
def __init__(self,suit,rank):
self.suit = suit
self.rank = rank
def __str__(self):
return self.rank + ' of ' + self.suit
class Deck:
def __init__(self):
self.deck = [] # start with an empty list
for suit in suits:
for rank in ranks:
self.deck.append(Card(suit,rank))
def __str__(self):
deck_comp = '' # start with an empty string
for card in self.deck:
deck_comp += '\n '+card.__str__() # add each Card object's print string
return 'The deck has:' + deck_comp
def shuffle(self):
random.shuffle(self.deck)
def deal(self):
single_card = self.deck.pop()
return single_card
class Hand:
def __init__(self):
self.cards = [] # start with an empty list as we did in the Deck class
self.value = 0 # start with zero value
self.aces = 0 # add an attribute to keep track of aces
def add_card(self,card):
self.cards.append(card)
self.value += values[card.rank]
if card.rank == 'Ace':
self.aces += 1 # add to self.aces
def adjust_for_ace(self):
while self.value > 21 and self.aces:
self.value -= 10
self.aces -= 1
class Chips:
def __init__(self):
self.total = 100
self.bet = 0
def win_bet(self):
self.total += self.bet
def lose_bet(self):
self.total -= self.bet
# FUNCTION DEFINITIONS:
def take_bet(chips):
while True:
try:
chips.bet = int(input('How many chips would you like to bet? '))
except ValueError:
print('Sorry, a bet must be an integer!')
else:
if chips.bet > chips.total:
print("Sorry, your bet can't exceed",chips.total)
else:
break
def hit(deck,hand):
hand.add_card(deck.deal())
hand.adjust_for_ace()
def hit_or_stand(deck,hand):
global playing
while True:
x = input("Would you like to Hit or Stand? Enter 'h' or 's' ")
if x[0].lower() == 'h':
hit(deck,hand) # hit() function defined above
elif x[0].lower() == 's':
print("Player stands. Dealer is playing.")
playing = False
else:
print("Sorry, please try again.")
continue
break
def show_some(player,dealer):
print("\nDealer's Hand:")
print(" <card hidden>")
print('',dealer.cards[1])
print("\nPlayer's Hand:", *player.cards, sep='\n ')
def show_all(player,dealer):
print("\nDealer's Hand:", *dealer.cards, sep='\n ')
print("Dealer's Hand =",dealer.value)
print("\nPlayer's Hand:", *player.cards, sep='\n ')
print("Player's Hand =",player.value)
def player_busts(player,dealer,chips):
print("Player busts!")
chips.lose_bet()
def player_wins(player,dealer,chips):
print("Player wins!")
chips.win_bet()
def dealer_busts(player,dealer,chips):
print("Dealer busts!")
chips.win_bet()
def dealer_wins(player,dealer,chips):
print("Dealer wins!")
chips.lose_bet()
def push(player,dealer):
print("Dealer and Player tie! It's a push.")
# GAMEPLAY!
# Set up the Player's chips
player_chips = Chips() # remember the default value is 100
while True:
print('Welcome to BlackJack! Get as close to 21 as you can without going over!\n\
Dealer hits until she reaches 17. Aces count as 1 or 11.')
# Create & shuffle the deck, deal two cards to each player
deck = Deck()
deck.shuffle()
player_hand = Hand()
player_hand.add_card(deck.deal())
player_hand.add_card(deck.deal())
dealer_hand = Hand()
dealer_hand.add_card(deck.deal())
dealer_hand.add_card(deck.deal())
# Prompt the Player for their bet:
take_bet(player_chips)
# Show the cards:
show_some(player_hand,dealer_hand)
while playing: # recall this variable from our hit_or_stand function
# Prompt for Player to Hit or Stand
hit_or_stand(deck,player_hand)
show_some(player_hand,dealer_hand)
if player_hand.value > 21:
player_busts(player_hand,dealer_hand,player_chips)
break
# If Player hasn't busted, play Dealer's hand
if player_hand.value <= 21:
while dealer_hand.value < 17:
hit(deck,dealer_hand)
# Show all cards
show_all(player_hand,dealer_hand)
# Test different winning scenarios
if dealer_hand.value > 21:
dealer_busts(player_hand,dealer_hand,player_chips)
elif dealer_hand.value > player_hand.value:
dealer_wins(player_hand,dealer_hand,player_chips)
elif dealer_hand.value < player_hand.value:
player_wins(player_hand,dealer_hand,player_chips)
else:
push(player_hand,dealer_hand)
# Inform Player of their chips total
print("\nPlayer's winnings stand at",player_chips.total)
# Ask to play again
new_game = input("Would you like to play another hand? Enter 'y' or 'n' ")
if new_game[0].lower()=='y':
playing=True
continue
else:
print("Thanks for playing!")
break
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment