Last active
November 1, 2020 10:11
-
-
Save rezazadeh/5a3bb88d9fdf423dd861 to your computer and use it in GitHub Desktop.
CosineSimilarity DIMSUM Example
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* Licensed to the Apache Software Foundation (ASF) under one or more | |
* contributor license agreements. See the NOTICE file distributed with | |
* this work for additional information regarding copyright ownership. | |
* The ASF licenses this file to You under the Apache License, Version 2.0 | |
* (the "License"); you may not use this file except in compliance with | |
* the License. You may obtain a copy of the License at | |
* | |
* http://www.apache.org/licenses/LICENSE-2.0 | |
* | |
* Unless required by applicable law or agreed to in writing, software | |
* distributed under the License is distributed on an "AS IS" BASIS, | |
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
* See the License for the specific language governing permissions and | |
* limitations under the License. | |
*/ | |
package org.apache.spark.examples.mllib | |
import scopt.OptionParser | |
import org.apache.spark.SparkContext._ | |
import org.apache.spark.mllib.linalg.Vectors | |
import org.apache.spark.mllib.linalg.distributed.{MatrixEntry, RowMatrix} | |
import org.apache.spark.{SparkConf, SparkContext} | |
/** | |
* Compute the similar columns of a matrix, using cosine similarity. | |
* | |
* The input matrix must be stored in row-oriented dense format, one line per row with its entries | |
* separated by space. For example, | |
* {{{ | |
* 0.5 1.0 | |
* 2.0 3.0 | |
* 4.0 5.0 | |
* }}} | |
* represents a 3-by-2 matrix, whose first row is (0.5, 1.0). | |
* | |
* Example invocation: | |
* | |
* bin/run-example mllib.CosineSimilarity \ | |
* --threshold 0.1 data/mllib/sample_svm_data.txt | |
*/ | |
object CosineSimilarity { | |
case class Params(inputFile: String = null, threshold: Double = 0.1) | |
def main(args: Array[String]) { | |
val defaultParams = Params() | |
val parser = new OptionParser[Params]("CosineSimilarity") { | |
head("CosineSimilarity: an example app.") | |
opt[Double]("threshold") | |
.required() | |
.text(s"threshold similarity: to tradeoff computation vs quality estimate") | |
.action((x, c) => c.copy(threshold = x)) | |
arg[String]("<inputFile>") | |
.required() | |
.text(s"input file, one row per line, space-separated") | |
.action((x, c) => c.copy(inputFile = x)) | |
note( | |
""" | |
|For example, the following command runs this app on a dataset: | |
| | |
| ./bin/spark-submit --class org.apache.spark.examples.mllib.CosineSimilarity \ | |
| examplesjar.jar \ | |
| --threshold 0.1 data/mllib/sample_svm_data.txt | |
""".stripMargin) | |
} | |
parser.parse(args, defaultParams).map { params => | |
run(params) | |
} getOrElse { | |
System.exit(1) | |
} | |
} | |
def run(params: Params) { | |
val conf = new SparkConf().setAppName("CosineSimilarity") | |
val sc = new SparkContext(conf) | |
// Load and parse the data file. | |
val rows = sc.textFile(params.inputFile).map { line => | |
val values = line.split(' ').map(_.toDouble) | |
Vectors.dense(values) | |
}.cache() | |
val mat = new RowMatrix(rows) | |
// Compute similar columns perfectly, with brute force. | |
val exact = mat.columnSimilarities() | |
// Compute similar columns with estimation using DIMSUM | |
val approx = mat.columnSimilarities(params.threshold) | |
val exactEntries = exact.entries.map { case MatrixEntry(i, j, u) => ((i, j), u) } | |
val approxEntries = approx.entries.map { case MatrixEntry(i, j, v) => ((i, j), v) } | |
val MAE = exactEntries.leftOuterJoin(approxEntries).values.map { | |
case (u, Some(v)) => | |
math.abs(u - v) | |
case (u, None) => | |
math.abs(u) | |
}.mean() | |
println(s"Average absolute error in estimate is: $MAE") | |
sc.stop() | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment