Skip to content

Instantly share code, notes, and snippets.

@rhnonose
Last active February 22, 2017 17:56
Show Gist options
  • Save rhnonose/8501a3fd60e498310445b50750269dbd to your computer and use it in GitHub Desktop.
Save rhnonose/8501a3fd60e498310445b50750269dbd to your computer and use it in GitHub Desktop.
FutureLearn exercises
-module(first).
-export([double/1, mult/2, area/3, square/1, treble/1]).
mult(X,Y) ->
X*Y.
double(X) ->
mult(X, 2).
area(A,B,C) ->
S = (A+B+C)/2,
math:sqrt(S*(S-A)*(S-B)*(S-C)).
square(A) ->
math:sqrt(A).
treble(A) ->
A*3.
-module(recur).
-export([fac/1, fib/1, pieces/1]).
% Factorial
fac(0) -> 1;
fac(N) when N > 0 -> N*fac(N-1);
fac(_) -> 1.
% Fibonnacci
fib(0) -> 0;
fib(1) -> 1;
fib(N) when N > 0 -> fib(N - 1) + fib(N - 2);
fib(_) -> 0.
% N Dimensions
pieces(0) -> 1;
pieces(N) -> N + pieces(N - 1).
-module(recur_tail).
-export([fac/1, fib/1, perfect/1]).
%Factorial with tail recursion
fac(N) when N > 0 -> fac_tail(N, 1).
fac_tail(0, Acc) -> Acc;
fac_tail(N, Acc) -> fac_tail(N-1, N*Acc).
%Fibonnacci sequence with tail recursion
fib(N) -> fib_tail(N, 0, 1).
fib_tail(0, Acc1, _) -> Acc1;
fib_tail(1, _, Acc2) -> Acc2;
fib_tail(N, Acc1, Acc2) -> fib_tail(N - 1, Acc2, Acc1+Acc2).
perfect(N) -> perfect_tail(N, 1, 0).
perfect_tail(N, N, N) -> true;
perfect_tail(N, N, _) -> false;
perfect_tail(N, Div, Acc) when N rem Div == 0 -> perfect_tail(N, Div+1, Acc+Div);
perfect_tail(N, Div, Acc) -> perfect_tail(N, Div+1, Acc).
-module(second).
-export([hypo/2, peri/2, area/2]).
hypo(A,B) ->
first:square(A*A + B*B).
peri(A,B) ->
A + B + hypo(A,B).
area(A,B) ->
(A*B)/2.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment