Last active
August 29, 2015 14:09
-
-
Save ricardosasilva/6823461110f3765c89e9 to your computer and use it in GitHub Desktop.
Custom Haystack Elasticsearch backend with function_score and percolator support
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from haystack.backends.elasticsearch_backend import ElasticsearchSearchQuery, ElasticsearchSearchBackend, \ | |
ElasticsearchSearchEngine | |
from haystack.query import SearchQuerySet | |
from haystack.constants import DEFAULT_ALIAS, DJANGO_CT | |
from django.conf import settings | |
from haystack.utils import get_model_ct | |
# Snagged this a LOT of this from: https://github.com/josephdrose/django-haystack | |
# and http://www.stamkracht.com/extending-haystacks-elasticsearch-backend/ | |
class ConfigurableElasticBackend(ElasticsearchSearchBackend): | |
DEFAULT_ANALYZER = "snowball" | |
def __init__(self, connection_alias, **connection_options): | |
super(ConfigurableElasticBackend, self).__init__( | |
connection_alias, **connection_options) | |
user_settings = getattr(settings, 'ELASTICSEARCH_INDEX_SETTINGS') | |
if user_settings: | |
setattr(self, 'DEFAULT_SETTINGS', user_settings) | |
def build_search_kwargs(self, query_string, sort_by=None, start_offset=0, end_offset=None, | |
fields='', highlight=False, facets=None, | |
date_facets=None, query_facets=None, | |
narrow_queries=None, spelling_query=None, | |
within=None, dwithin=None, distance_point=None, | |
models=None, limit_to_registered_models=None, | |
result_class=None,custom_score=None,nested=None): | |
out = super(ConfigurableElasticBackend, self).build_search_kwargs(query_string, sort_by, start_offset, end_offset, | |
fields, highlight, facets, | |
date_facets, query_facets, | |
None, spelling_query, #narrow_queries==None | |
within, dwithin, distance_point, | |
None, False, #models==None, limit_..._models==False | |
result_class) | |
# Wrapping order TOP: inner query -> DOWN: outer queries | |
if custom_score: | |
out['query'] = { "function_score": { | |
"script_score": {"script": custom_score['score_query_string']}, | |
"query": out['query'] | |
} | |
} | |
if custom_score['score_query_params']: | |
out['query']['custom_score']['params'] = custom_score['score_query_params'] | |
if nested: | |
# check if there is an original query | |
if 'match_all' not in out['query']: | |
out['query'] = self.bool_query_factory(out['query'], nested) | |
else: | |
out['query'] = self.nested_query_factory(nested) | |
## START outer wrapping of filter(s): narrow(access/models/etc.) | |
if limit_to_registered_models is None: | |
limit_to_registered_models = getattr(settings, 'HAYSTACK_LIMIT_TO_REGISTERED_MODELS', True) | |
if models and len(models): | |
model_choices = sorted(['%s.%s' % (model._meta.app_label, model._meta.module_name) for model in models]) | |
elif limit_to_registered_models: | |
# Using narrow queries, limit the results to only models handled | |
# with the current routers. | |
model_choices = self.build_models_list() | |
else: | |
model_choices = [] | |
if len(model_choices) > 0: | |
if narrow_queries is None: | |
narrow_queries = set() | |
narrow_queries.add('%s:(%s)' % (DJANGO_CT, ' OR '.join(model_choices))) | |
if narrow_queries: | |
out['query'] = { | |
'filtered': { | |
'query': out['query'], | |
'filter': { | |
'fquery': { | |
'query': { | |
'query_string': { | |
'query': u' AND '.join(list(narrow_queries)), | |
}, | |
}, | |
'_cache': True, | |
} | |
} | |
} | |
} | |
## END outer wrapping of model filter(s) | |
return out | |
def nested_query_factory(self, nested): | |
score_script = "(doc['%s.points'].empty ? 0 : doc['%s.points'].value)" % \ | |
(nested['nested_query_path'],nested['nested_query_path']) | |
query = {"nested": { | |
"path": nested['nested_query_path'], | |
"score_mode": "total", | |
"query": { | |
"function_score": { | |
"query": { | |
"terms": { | |
nested['nested_query_field']: nested['nested_query_terms'], | |
"minimum_match" : 1 | |
} | |
}, | |
"script_score": { | |
"script" : score_script, | |
"lang": "mvel" | |
}, | |
"boost_mode": "replace" | |
} | |
} | |
} | |
} | |
return query | |
def bool_query_factory(self, original_query, nested): | |
query = {"bool": { | |
"should": [ | |
self.nested_query_factory(nested), | |
original_query | |
], | |
"minimum_should_match": 1 | |
} | |
} | |
return query | |
def build_schema(self, fields): | |
content_field_name = '' | |
mapping = {} | |
for field_name, field_class in fields.items(): | |
field_mapping = { | |
'boost': field_class.boost, | |
'index': 'analyzed', | |
'store': 'yes', | |
'type': 'string', | |
} | |
if field_class.document is True: | |
content_field_name = field_class.index_fieldname | |
if field_class.field_type in ['date', 'datetime']: | |
field_mapping['type'] = 'date' | |
elif field_class.field_type == 'integer': | |
field_mapping['type'] = 'long' | |
elif field_class.field_type == 'float': | |
field_mapping['type'] = 'float' | |
elif field_class.field_type == 'boolean': | |
field_mapping['type'] = 'boolean' | |
elif field_class.field_type == 'nested': | |
field_mapping['type'] = 'nested' | |
try: | |
field_mapping['properties'] = field_class.properties | |
except AttributeError: | |
pass | |
elif field_class.field_type == 'ngram': | |
field_mapping['analyzer'] = "ngram_analyzer" | |
elif field_class.field_type == 'edge_ngram': | |
field_mapping['analyzer'] = "edgengram_analyzer" | |
elif field_class.field_type == 'location': | |
field_mapping['type'] = 'geo_point' | |
if field_class.stored is False: | |
field_mapping['store'] = 'no' | |
# Do this last to override `text` fields. | |
if field_class.indexed is False or hasattr(field_class, 'facet_for'): | |
field_mapping['index'] = 'not_analyzed' | |
if field_mapping['type'] == 'string' and field_class.indexed: | |
field_mapping["term_vector"] = "with_positions_offsets" | |
if not hasattr(field_class, 'facet_for') and not field_class.field_type in('ngram', 'edge_ngram'): | |
field_mapping['analyzer'] = getattr(field_class, 'analyzer', | |
self.DEFAULT_ANALYZER) | |
mapping[field_class.index_fieldname] = field_mapping | |
return (content_field_name, mapping) | |
def build_schema(self, fields): | |
content_field_name, mapping = super(ConfigurableElasticBackend, | |
self).build_schema(fields) | |
for field_name, field_class in fields.items(): | |
field_mapping = mapping[field_class.index_fieldname] | |
if field_mapping['type'] == 'string' and field_class.indexed: | |
if not hasattr(field_class, 'facet_for') and not \ | |
field_class.field_type in('ngram', 'edge_ngram'): | |
field_mapping['analyzer'] = getattr(field_class, 'analyzer', | |
self.DEFAULT_ANALYZER) | |
mapping.update({field_class.index_fieldname: field_mapping}) | |
return (content_field_name, mapping) | |
def put_percolator(self, percolator_id, query): | |
''' | |
query must be a dictionary like {'query': {'match': {'title': 'text to create percolator'}}} | |
''' | |
self.conn.index(self.index_name, '.percolator', query, id=percolator_id) | |
def get_percolator(self, percolator_id): | |
return self.conn.get(index=self.index_name, doc_type='.percolator', id=percolator_id) | |
def delete_percolator(self, percolator_id): | |
''' | |
Deletes a saved search under the specified id | |
''' | |
self.conn.delete(self.index_name, '.percolator', id=percolator_id) | |
def percolate(self, model_instance): | |
model_class = model_instance._meta.concrete_model | |
model_path = get_model_ct(model_class) | |
return self.conn.percolate(self.index_name, doc_type='modelresult', id='{model}.{instance_id}'.format( | |
model=model_path, instance_id=model_instance.pk), body='{"track_scores": true}')['matches'] | |
class ConfigurableSearchQuerySet(SearchQuerySet): | |
def custom_score(self, score_query_string=None, params=None): | |
"""Adds arguments for custom_score to the query""" | |
clone = self._clone() | |
clone.query.add_custom_score(score_query_string, params) | |
return clone | |
def nested(self, terms=None, path="tags", field="tag"): | |
"""Adds arguments for nested to the query""" | |
clone = self._clone() | |
clone.query.add_nested(terms, path, field) | |
return clone | |
class ConfigurableElasticsearchSearchQuery(ElasticsearchSearchQuery): | |
def __init__(self, using=DEFAULT_ALIAS): | |
out = super(ConfigurableElasticsearchSearchQuery, self).__init__(using) | |
self.custom_score = {} | |
self.nested = {} | |
def add_custom_score(self, score_query_string=None, params=None): | |
"""Adds arguments for custom_score to the query""" | |
self.custom_score = { | |
'score_query_string': score_query_string, | |
'score_query_params': params, | |
} | |
def add_nested(self, terms=None, path=None, field=None): | |
"""Adds arguments for nested to the query""" | |
self.nested = { | |
'nested_query_terms': terms, | |
'nested_query_path': path, | |
'nested_query_field': field | |
} | |
def build_params(self, spelling_query=None, **kwargs): | |
""" | |
Add custom_score and/or nested parameters | |
""" | |
search_kwargs = super(ConfigurableElasticsearchSearchQuery, self).build_params(spelling_query, **kwargs) | |
if self.custom_score: | |
search_kwargs['custom_score'] = self.custom_score | |
if self.nested: | |
search_kwargs['nested'] = self.nested | |
return search_kwargs | |
def _clone(self, klass=None, using=None): | |
clone = super(ConfigurableElasticsearchSearchQuery, self)._clone(klass, using) | |
clone.custom_score = self.custom_score | |
clone.nested = self.nested | |
return clone | |
class ConfigurableElasticSearchEngine(ElasticsearchSearchEngine): | |
backend = ConfigurableElasticBackend | |
query = ConfigurableElasticsearchSearchQuery |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
You may also want to consider using the Groovy plugin for function_score scripts, instead of MVEL. Since Elasticsearch 1.3 the Groovy scripts can be sandboxed, and thereby eliminate the main security issue with dynamic scripts. This is not possible with any of the other supported scripting languages.