Last active
March 23, 2020 17:19
-
-
Save rikrd/3f02b14e0317832372f873f514996cfa to your computer and use it in GitHub Desktop.
APGF (all pole gammatone filterbank) implementation in Python
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
""" | |
/* | |
** Copyright (C) 2020 Ricard Marxer | |
** | |
** This program is free software; you can redistribute it and/or modify | |
** it under the terms of the GNU General Public License as published by | |
** the Free Software Foundation; either version 3 of the License, or | |
** (at your option) any later version. | |
** | |
** This program is distributed in the hope that it will be useful, | |
** but WITHOUT ANY WARRANTY; without even the implied warranty of | |
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
** GNU General Public License for more details. | |
** | |
** You should have received a copy of the GNU General Public License | |
** along with this program; if not, write to the Free Software | |
** Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. | |
*/ | |
""" | |
import numpy as np | |
from scipy.special import factorial | |
import matplotlib.pyplot as plt | |
import scipy.signal | |
"""Create a Gammatone AGPF in Python. | |
* Based on: | |
* | |
* http://www.dicklyon.com/tech/Hearing/APGF_Lyon_1996.pdf | |
* | |
* Implementing a GammaTone Filter Bank | |
* Holdsworth et al. 1988 | |
* | |
""" | |
def linear_to_erb(x): | |
return 21.4 * np.log10(4.37e-3 * x + 1.0) | |
def erb_to_linear(x): | |
return (10.0 ** (x / 21.4) - 1.0) / 4.37e-3 | |
def linear_to_erb_bandwidth(x): | |
return (x * 4.37e-3 + 1.0) * 24.7 | |
def gammatonepy(sample_rate, | |
low_frequency=50., | |
high_frequency=3500., | |
channel_count=32, | |
peak_phase=True, | |
): | |
# Implemented using SOS filters so order is forced to be 4 | |
order = 4 | |
# Compute the center frequencies | |
low_erb = linear_to_erb(low_frequency) | |
high_erb = linear_to_erb(high_frequency) | |
center_erbs = np.linspace(low_erb, high_erb, channel_count) | |
_centerFrequencies = erb_to_linear(center_erbs) | |
two_pi = 2 * np.pi | |
# Prepare filters parameters | |
an_inverse = pow(factorial(order - 1), 2) / \ | |
(np.pi * factorial(2 * order - 2) * pow(2, -(2 * order - 2))) | |
_bandwidths = linear_to_erb_bandwidth(_centerFrequencies) | |
_bandwidths *= an_inverse | |
delay = 3 / (two_pi * _bandwidths) | |
# Compute the poles positions and the phases | |
phi = _bandwidths * (two_pi / sample_rate) | |
theta = _centerFrequencies * (two_pi / sample_rate) | |
atilde = np.exp(-phi + theta * 1j) | |
btmp = (1 - np.exp(-phi)) | |
b2 = (btmp ** order).astype(np.complex128) | |
if peak_phase: | |
b2 *= np.exp(_centerFrequencies.astype(np.complex128) * delay.astype(np.complex128) * (two_pi * 1j)) | |
poles = np.repeat(atilde[:, np.newaxis], order / 2, axis=1) | |
a = np.apply_along_axis(np.poly, arr=poles, axis=1) | |
b = np.c_[b2, np.zeros_like(b2), np.zeros_like(b2)] | |
sos = np.c_[b, a] | |
sos = sos[:, np.newaxis, :] | |
sos = sos.repeat(2, axis=1) | |
# Set the numerator of the second filter to 1s | |
sos[:, 1, 0] = 1 | |
# Filter an impulse response | |
x = scipy.signal.unit_impulse(700, dtype=np.complex128) | |
y = np.zeros((sos.shape[0], x.shape[0]), dtype=np.complex128) | |
for i in range(sos.shape[0]): | |
y[i] = scipy.signal.sosfilt(sos[i], x) | |
plt.figure() | |
plt.plot(y[[0, 15, 31], :].T) | |
# Plot frequency response | |
plt.figure() | |
for i in range(sos.shape[0]): | |
w, h = scipy.signal.sosfreqz(sos[i], worN=1500) | |
plt.subplot(2, 1, 1) | |
db = 20 * np.log10(np.maximum(np.abs(h), 1e-5)) | |
plt.plot(w / np.pi, db) | |
plt.subplot(2, 1, 2) | |
plt.plot(w / np.pi, np.angle(h)) | |
plt.subplot(2, 1, 1) | |
plt.ylim(-80, 5) | |
plt.grid(True) | |
plt.yticks([0, -20, -40, -60]) | |
plt.ylabel('Gain [dB]') | |
plt.title('Frequency Response') | |
plt.subplot(2, 1, 2) | |
plt.grid(True) | |
plt.yticks([-np.pi, -0.5 * np.pi, 0, 0.5 * np.pi, np.pi], [r'$-\pi$', r'$-\pi/2$', '0', r'$\pi/2$', r'$\pi$']) | |
plt.ylabel('Phase [rad]') | |
plt.xlabel('Normalized frequency (1.0 = Nyquist)') | |
plt.show() | |
def main(): | |
gammatonepy(16000) | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment