Created
September 21, 2023 21:07
-
-
Save rileyhales/621626cb00309bab2774224871af0274 to your computer and use it in GitHub Desktop.
Synthetic Hydrograph Comparisons
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
import numpy as np | |
import pandas as pd | |
x = np.arange(0, np.pi * 12, 0.025) | |
q_insitu = 2 * np.sin(0.5 * x) + 4 | |
q_constant = np.ones_like(x) * 4 | |
q_biased_high = 2 * np.sin(0.5 * x) + 4 + 1.5 | |
q_biased_low = 2 * np.sin(0.5 * x) + 4 - 1.5 | |
q_inverse = 2 * np.sin(0.5 * x + np.pi) + 4 | |
q_bad_timing = 2 * np.sin(0.5 * x - 1) + 4 | |
q_higher_frequency = 3 * np.sin(2 * x) + 4 | |
q_nonstationary_mean = 2 * np.sin(5 * x) + 4 + np.sin(x) | |
df = pd.DataFrame({ | |
'q_insitu': q_insitu, | |
'q_constant': q_constant, | |
'q_biased_high': q_biased_high, | |
'q_biased_low': q_biased_low, | |
'q_inverse': q_inverse, | |
'q_bad_timing': q_bad_timing, | |
'q_higher_frequency': q_higher_frequency, | |
'q_nonstationary_mean': q_nonstationary_mean, | |
}) | |
def kge2012(simulated_array, observed_array): | |
# Means | |
sim_mean = np.mean(simulated_array) | |
obs_mean = np.mean(observed_array) | |
# Standard Deviations | |
sim_sigma = np.std(simulated_array) | |
obs_sigma = np.std(observed_array) | |
# Pearson R | |
top_pr = np.sum((observed_array - obs_mean) * (simulated_array - sim_mean)) | |
bot1_pr = np.sqrt(np.sum((observed_array - obs_mean) ** 2)) | |
bot2_pr = np.sqrt(np.sum((simulated_array - sim_mean) ** 2)) | |
pr = top_pr / (bot1_pr * bot2_pr) | |
# Ratio between mean of simulated and observed data | |
beta = sim_mean / obs_mean | |
# CV is the coefficient of variation (standard deviation / mean) | |
sim_cv = sim_sigma / sim_mean | |
obs_cv = obs_sigma / obs_mean | |
# Variability Ratio, or the ratio of simulated CV to observed CV | |
gam = sim_cv / obs_cv | |
if obs_mean == 0 or obs_sigma == 0 or sim_mean == 0: | |
return np.nan | |
kge = 1 - np.sqrt((pr - 1) ** 2 + (gam - 1) ** 2 + (beta - 1) ** 2) | |
return kge | |
for qcol in df.columns.drop('q_insitu'): | |
fig, ax = plt.subplots(tight_layout=True, figsize=(6, 4)) | |
( | |
df | |
[['q_insitu', qcol]] | |
.rename(columns={'q_insitu': 'in-situ', qcol: 'model'}) | |
.plot(figsize=(7, 4), ax=ax, legend=True, color=['k', 'r']) | |
) | |
# calculate mean error, rmse, R, kling gupta, and nash sutcliffe | |
me = np.mean(df['q_insitu'] - df[qcol]) | |
mse = np.mean((df['q_insitu'] - df[qcol]) ** 2) | |
rmse = np.sqrt(np.mean((df['q_insitu'] - df[qcol]) ** 2)) | |
r = np.corrcoef(df['q_insitu'], df[qcol])[0, 1] | |
kg = kge2012(df[qcol], df['q_insitu']) | |
ns = 1 - (np.sum((df['q_insitu'] - df[qcol]) ** 2) / np.sum((df['q_insitu'] - np.mean(df['q_insitu'])) ** 2)) | |
volume_insitu = np.sum(df['q_insitu']) | |
volume_qcol = np.sum(df[qcol]) | |
std_insitu = np.std(df['q_insitu']) | |
std_qcol = np.std(df[qcol]) | |
if np.isnan(r): | |
r = 0 | |
ax.set_ylabel('Discharge (m3/s)') | |
ax.set_xlabel('Time') | |
ax.set_ylim(0, 8) | |
ax.set_xticks([]) | |
fig.savefig(f'./hydrograph_comparison_nometrics_{qcol}.png', dpi=500) | |
ax.set_title( | |
f'ME: {round(me, 2)} MSE: {round(mse, 2)} RMSE: {round(rmse, 2)} R: {round(r, 2)} KG: {round(kg, 2)} NS: {round(ns, 2)}' + | |
f'\nVolume Insitu: {round(volume_insitu, 2)} Volume Model: {round(volume_qcol, 2)}' | |
f'\nStd Insitu: {round(std_insitu, 2)} Std Model: {round(std_qcol, 2)}' | |
) | |
fig.savefig(f'./hydrograph_comparison_withmetrics_{qcol}.png', dpi=500) | |
plt.close(fig) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment