Created
July 2, 2020 21:02
-
-
Save riveSunder/96267f5a52a1ebe8f567505516d4e068 to your computer and use it in GitHub Desktop.
Training a multi-slice optical system to produce a target output image with gradient descent.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import autograd.numpy as np | |
from autograd import grad | |
import matplotlib.pyplot as plt | |
import time | |
import skimage | |
import skimage.io as sio | |
def asm_prop(wavefront, length=32.e-3, wavelength=550.e-9, distance=10.e-3): | |
if len(wavefront.shape) == 2: | |
dim_x, dim_y = wavefront.shape | |
elif len(wavefront.shape) == 3: | |
number_samples, dim_x, dim_y = wavefront.shape | |
else: | |
print("only 2D wavefronts or array of 2D wavefronts supported") | |
assert dim_x == dim_y, "wavefront should be square" | |
px = length / dim_x | |
l2 = (1/wavelength)**2 | |
fx = np.linspace(-1/(2*px), 1/(2*px) - 1/(dim_x*px), dim_x) | |
fxx, fyy = np.meshgrid(fx,fx) | |
q = l2 - fxx**2 - fyy**2 | |
q[q<0] = 0.0 | |
h = np.fft.fftshift(np.exp(1.j * 2 * np.pi * distance * np.sqrt(q))) | |
fd_wavefront = np.fft.fft2(np.fft.fftshift(wavefront)) | |
if len(wavefront.shape) == 3: | |
fd_new_wavefront = h[np.newaxis,:,:] * fd_wavefront | |
new_wavefront=np.fft.ifftshift(np.fft.ifft2(fd_new_wavefront))[:,:dim_x,:dim_x] | |
else: | |
fd_new_wavefront = h * fd_wavefront | |
new_wavefront = np.fft.ifftshift(np.fft.ifft2(fd_new_wavefront))[:dim_x,:dim_x] | |
return new_wavefront | |
def onn_layer(wavefront, phase_objects, d=100.e-3): | |
for ii in range(len(phase_objects)): | |
wavefront = asm_prop(wavefront * phase_objects[ii], distance=d) | |
return wavefront | |
def get_loss(wavefront, y_tgt, phase_objects, d=100.e-3): | |
img = np.abs(onn_layer(wavefront, phase_objects, d=d))**2 | |
mse_loss = np.mean( (img - y_tgt)**2 + np.abs(img-y_tgt) ) | |
return mse_loss | |
get_grad = grad(get_loss, argnum=2) | |
if __name__ == "__main__": | |
dim = 128 | |
side_length = 32.e-3 | |
aperture = 8.e-3 | |
wavelength = 550.e-9 | |
k0 = 2*np.pi / wavelength | |
dist = 50.e-3 | |
px = side_length / dim | |
x = np.linspace(-side_length/2, side_length/2-px, dim) | |
xx, yy = np.meshgrid(x,x) | |
rr = np.sqrt(xx**2 + yy**2) | |
wavefront = np.zeros((dim,dim)) * np.exp(1.j*k0*0.0) | |
wavefront[rr <= aperture] = 1.0 | |
tgt_img = sio.imread("./smiley.png")[:,:,0] | |
y_tgt = 1.0 * tgt_img / np.max(tgt_img) | |
lr = 1e-3 | |
phase_objects = [np.exp(1.j * np.zeros((128,128)) ) \ | |
for aa in range(32)] | |
losses = [] | |
for step in range(128): | |
my_grad = get_grad(wavefront, y_tgt, phase_objects, d=dist) | |
for params, grads in zip(phase_objects, my_grad): | |
params -= lr * np.exp( -1.j * np.angle(grads)) | |
loss = get_loss(wavefront, y_tgt, phase_objects,d=dist) | |
losses.append(loss) | |
img = np.abs(onn_layer(wavefront, phase_objects))**2 | |
print("loss at step {} = {:.2e}, lr={:.3e}".format(step, loss, lr)) | |
fig = plt.figure(figsize=(12,7)) | |
plt.imshow(img / 2.0, cmap="magma") | |
plt.savefig("./smiley_img{}.png".format(step)) | |
plt.close(fig) | |
fig = plt.figure(figsize=(7,4)) | |
plt.plot(losses, lw=3) | |
plt.savefig("./smiley_losses.png") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment