Created
August 12, 2015 02:17
RF Feature Correlation Bias
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import random | |
import sys | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from sklearn.ensemble import RandomForestClassifier | |
N_SAMPLES = 10 | |
N_TREES = 100 | |
MAX_CATEGORIES = 32 | |
N_SIMS = 100 | |
def generate_data(n_samples, n_correlated, corr_prob): | |
n_features = 5 + n_correlated | |
features = np.zeros((n_samples, n_features)) | |
labels = np.zeros(n_samples) | |
for r in xrange(n_samples): | |
labels[r] = random.randint(0, 1) | |
for i in xrange(5): | |
features[r, i] = random.randint(0, 1) | |
for i in xrange(5, n_features): | |
if random.random() < corr_prob: | |
features[r, i] = labels[r] | |
else: | |
features[r, i] = random.randint(0, 1) | |
return features, labels | |
def plot_variable_importances(flname, variable_importances, title): | |
plt.clf() | |
plt.boxplot(x=variable_importances) | |
plt.xlabel("Variable", fontsize=16) | |
plt.ylabel("Gini Importance", fontsize=16) | |
plt.title(title, fontsize=18) | |
plt.ylim([0.0, 1.0]) | |
plt.savefig(flname, DPI=200) | |
if __name__ == "__main__": | |
# burn in | |
for i in xrange(100): | |
random.random() | |
for corr_prob in [1.0, 0.75]: | |
for n_correlated in [1, 2, 5, 10, 25]: | |
variable_importances = [[] for i in xrange(5 + n_correlated)] | |
for i in xrange(N_SIMS): | |
print "Round", i | |
X, y = generate_data(N_SAMPLES, n_correlated, corr_prob) | |
rf = RandomForestClassifier(n_estimators = N_TREES) | |
rf.fit(X, y) | |
feature_importances = rf.feature_importances_ | |
for i in xrange(len(feature_importances)): | |
variable_importances[i].append(feature_importances[i]) | |
plot_variable_importances(sys.argv[1] + "_corr_" + str(corr_prob) + "_" + str(n_correlated) + ".png", variable_importances, str(n_correlated) + " Correlated Variables") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment