Skip to content

Instantly share code, notes, and snippets.

@robianmcd robianmcd/model.py
Last active Jun 20, 2017

Embed
What would you like to do?
import numpy
import pandas
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import cross_val_score
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import StratifiedKFold
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
# load dataset
dataframe = pandas.read_csv("sonar.csv", header=None)
dataset = dataframe.values
# split into input (X) and output (Y) variables
X = dataset[:,0:60].astype(float)
Y = dataset[:,60]
# encode class values as integers
encoder = LabelEncoder()
encoder.fit(Y)
encoded_Y = encoder.transform(Y)
# baseline model
def create_baseline():
# create model
model = Sequential()
model.add(Dense(60, input_dim=60, kernel_initializer='normal', activation='relu'))
model.add(Dense(1, kernel_initializer='normal', activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
# evaluate model with standardized dataset
estimator = KerasClassifier(build_fn=create_baseline, nb_epoch=100, batch_size=5, verbose=0)
kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=seed)
results = cross_val_score(estimator, X, encoded_Y, cv=kfold)
print("Results: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))
model = create_baseline()
model.fit(X, encoded_Y, epochs=100, batch_size=5, validation_split=0.3)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.