Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
library(contextual)
library(data.table)
library(animation)
## 1. Bandit Simulation ---------------------------------------------------------------------------
# Run a simulation that saves the policy's theta values
policy <- EpsilonGreedyPolicy$new(epsilon = 0.1)
bandit <- BasicBernoulliBandit$new(weights = c(0.4, 0.5, 0.3))
agent <- Agent$new(policy,bandit, "EG")
simulator <- Simulator$new(agents = agent,
horizon = 100,
set_seed = 8,
save_theta = TRUE,
simulations = 1)
hist <- simulator$run()
# retrieve saved parameter values
td <- hist$get_theta("EG",to_numeric_matrix = TRUE)
## 2. Bandit Animation ----------------------------------------------------------------------------
# Create color matrix based on theta values
color_matrix <- matrix(c("gray","gray","gray"),nrow(td),3)
color_matrix[cbind(which(td[,"exploit"]==1),td[as.logical(td[,"exploit"]),"choice"])] <- "green"
color_matrix[cbind(which(td[,"exploit"]==0),td[!as.logical(td[,"exploit"]),"choice"])] <- "red"
colnames(color_matrix) <- c("C1","C2","C3")
cm <- as.data.frame(color_matrix, stringsAsFactors = FALSE)
message("Starting compilation of animation")
library(animation)
animation::ani.options(interval = 0.3, ani.width = 450, ani.height = 400, verbose = FALSE)
saveHTML({
animation::ani.options(interval = 0.05)
for (i in 1:100) {
par(mar = c(5,4,4,9))
barplot(c(td[i,"mean1"]+0.015, td[i,"mean2"]+0.015, td[i,"mean3"]+0.015),
ylim = c(0,1.015),
ylab = "Average Reward",
xlab = "Arm",
main = paste0("EpsilonGreedy\nt = ",
sprintf("%03d", i),
" | choice = ",
hist$data$choice[[i]],
" | reward = ",
hist$data$reward[[i]], "\n"),
names.arg = c("1", "2", "3"),
col = c(cm[i,"C1"], cm[i,"C2"], cm[i,"C3"])
)
box()
axis(side = 1, at = c(0.7,1.9,3.1), labels = FALSE)
legend("bottomright",bty ="n",xpd = TRUE, inset=c(-0.42, 0),
title = "Choice",
legend = c("Exploiting", "Exploring"), fill = c("green", "red"))
ani.pause()
}
}, htmlfile = "index.html", img.name = "eg", navigator = FALSE, imgdir = "eg",
autoplay = FALSE, single.opts = "'theme': 'light', 'utf8': false,'controls':
['first', 'previous', 'play', 'next', 'last', 'loop','speed']")
message("Completed animation")
invisible(tryCatch(dev.off(), error=function(e){}))
library(contextual)
library(data.table)
library(animation)
## 1. Bandit Simulation ---------------------------------------------------------------------------
horizon <- 50
weights <- c(0.5, 0.4, 0.6)
policy <- ThompsonSamplingPolicy$new()
bandit <- BasicBernoulliBandit$new(weights = weights)
agent <- Agent$new(policy,bandit, "TS")
simulator <- Simulator$new(agents = agent,
horizon = horizon,
set_seed = 22,
save_theta = TRUE,
simulations = 1)
hist <- simulator$run()
td <- data.frame(hist$get_theta("TS",to_numeric_matrix = TRUE))
td <- data.table(rbind(rep(1,ncol(td)),td))
## 2. Bandit Animation ----------------------------------------------------------------------------
plot_curves <- function(td,i) {
plot(NULL, xlim = c(0,1), ylim = c(0,6), ylab = "Density", xlab = "Theta",
main = paste0("ThompsonSampling\nt = ",
sprintf("%03d", trunc(i/2)+1),
" | choice = ",
hist$data$choice[[i]],
" | reward = ",
hist$data$reward[[i]], "\n"))
curve(dbeta(x,as.numeric(td[i,1]),as.numeric(td[i,4])), from=0, to=1, col="green", add = TRUE)
curve(dbeta(x,as.numeric(td[i,2]),as.numeric(td[i,5]))-0.05, from=0, to=1, col="red", add = TRUE)
curve(dbeta(x,as.numeric(td[i,3]),as.numeric(td[i,6]))-0.1, from=0, to=1, col="blue", add = TRUE)
legend("bottomright",bty ="n",xpd = TRUE, inset=c(-0.42, 0), title = "Arms",
legend = c("Arm 1", "Arm 2", "Arm 3"), fill = c("green", "red", "blue"))
}
plot_lines <- function(td,i) {
abline(v=td[i,7],col="green")
abline(v=td[i,8],col="red")
abline(v=td[i,9],col="blue")
}
message("Starting compilation of animation")
library(animation)
animation::ani.options(interval = 0.06, ani.width = 450, ani.height = 400, verbose = FALSE)
saveHTML({
for (i in seq(from = 1, to = horizon)) {
par(mar = c(5,4,4,9))
plot_curves(td,i)
ani.pause()
plot_curves(td,i)
plot_lines(td,i+1)
ani.pause()
}
}, htmlfile = "index.html", img.name = "ts", navigator = FALSE, imgdir = "ts",
autoplay = FALSE, single.opts = "'theme': 'light', 'utf8': false,'controls':
['first', 'previous', 'play', 'next', 'last', 'loop','speed']")
message("Completed animation")
invisible(tryCatch(dev.off(), error=function(e){}))
library(contextual)
library(data.table)
library(animation)
## 1. Bandit Simulation ---------------------------------------------------------------------------
horizon <- 50
weights <- c(0.5, 0.1, 0.8, 0.2, 0.4)
policy <- UCB1Policy$new()
bandit <- BasicBernoulliBandit$new(weights = weights)
agent <- Agent$new(policy,bandit, "UCB1")
simulator <- Simulator$new(agents = agent,
horizon = horizon,
save_theta = TRUE,
simulations = 1)
hist <- simulator$run()
td <- data.table(hist$get_theta("UCB1",to_numeric_matrix = TRUE))
## 2. Bandit Animation ----------------------------------------------------------------------------
# How many arms
k <- hist$data$k[1]
# Create matrix where chosen arm is green when reward 1, red when zero
color_matrix <- matrix(rep("gray",k),nrow(td),k)
color_matrix[cbind(which(td[,"reward"]==1),
as.numeric(td[ as.logical(td[,"reward"][[1]]), "choice"][[1]]))] <- "green"
color_matrix[cbind(which(td[,"reward"]==0),
as.numeric(td[!as.logical(td[,"reward"][[1]]), "choice"][[1]]))] <- "red"
colnames(color_matrix) <- c(paste0("C", 1:k))
cm <- as.data.frame(color_matrix, stringsAsFactors = FALSE)
# The first k repeats are random
td$t[1:k] <- k
# Calculate standard deviation, UCB1 style
sd <- sqrt((2*log(td$t)) / td[,1:k])
sd[is.na(sd) | sapply(sd, is.infinite)] <- 0
x <- c(1:k)
plot_bandit <- function(x, y, col, i) {
plot(x, y, pch=15, cex = 2.5, ylim = c(-2.3,2.9), xlim = c(0.5,(k+0.5)),
ylab = "Average Reward", xlab = "Arm", col = col,
main = paste0("UCB1\nt = ",
sprintf("%03d", i),
" | choice = ",
ifelse(i>0,hist$data$choice[[i]],0),
" | reward = ",
ifelse(i>0,hist$data$reward[[i]],0), "\n"))
legend("bottomright",bty ="n",xpd = TRUE, inset=c(-0.42, 0),
title = "Choice", legend = c("Rewarded 1", "Rewarded 0"), fill = c("green", "red"))
}
des = c("This is a silly example.\n\n", "You can describe it in more detail.",
"For example, bla bla...")
message("Starting compilation of animation")
library(animation)
animation::ani.options(interval = 0.06, ani.width = 450, ani.height = 400, verbose = FALSE)
saveHTML({
par(mar = c(5,4,4,9))
# before start simulation, all gray..
plot_bandit(x,rep(0,k), rep("gray",k),0)
ani.pause()
# followed by first choice
plot_bandit(x,rep(0,k), unlist(cm[1, c(paste0("C", 1:k))]),1)
ani.pause()
# now run over all remaining steps
for (i in 1:(horizon-1)) {
y_means <- as.numeric(td[i,(1+k):(k+k)])
y_sd <- as.numeric(sd[i,])
maxsd <- max(y_means + y_sd)
maxmean <- max(y_means)
plot_bandit(x,y_means,unlist(cm[(i + 1), c(paste0("C", 1:k))]),i+1)
abline(h = maxsd+0.02, col = "gray", lty=2)
abline(h = maxmean+0.02, col = "gray", lty=3)
arrows(x, y_means + y_sd, x, y_means-y_sd, angle=90, code=3, length=0.1, lwd = 2,
col = unlist(cm[(i + 1), c(paste0("C", 1:k))]))
ani.pause()
}
}, htmlfile = "index.html", img.name = "ucb", navigator = FALSE, imgdir = "ucb",
autoplay = FALSE, single.opts = "'theme': 'light', 'utf8': false,'controls':
['first', 'previous', 'play', 'next', 'last', 'loop','speed']")
message("Completed animation")
invisible(tryCatch(dev.off(), error=function(e){}))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.