Created
June 12, 2024 21:44
-
-
Save rodolfo42/cd8d54134ee822b41450713aea405093 to your computer and use it in GitHub Desktop.
Carregando Dataframes no BigQuery
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from google.colab import userdata | |
from google.oauth2 import service_account | |
from google.cloud import bigquery | |
import json | |
import pandas as pd | |
import pyarrow as pa | |
# Configura o client do BigQuery | |
# precisa ter o secret configurado no Colab, chave 'svc_account' | |
credentials = service_account.Credentials.from_service_account_info( | |
info=json.loads(userdata.get('svc_account'), strict=False), scopes=["https://www.googleapis.com/auth/cloud-platform"] | |
) | |
client = bigquery.Client(credentials=credentials) | |
# Substitui valores None ou NaN por valores padrão | |
def replace_none_with_default(df): | |
for col in df.columns: | |
if df[col].dtype == 'int64': | |
df[col] = df[col].fillna(0) | |
elif df[col].dtype == 'float64': | |
df[col] = df[col].fillna(0.0) | |
elif df[col].dtype == 'object': | |
df[col] = df[col].fillna('') | |
return df | |
# Converte colunas de data para o formato datetime | |
def convert_date_columns(df, date_columns): | |
for date_col in date_columns: | |
if date_col in df.columns: | |
df[date_col] = pd.to_datetime(df[date_col], errors='coerce') | |
return df | |
def get_date_columns(bq_schema): | |
return [field.name for field in bq_schema if field.field_type in ['DATE', 'DATETIME', 'TIME', 'TIMESTAMP']] | |
# Function to convert BigQuery SchemaField to pyarrow field | |
def bq_to_pyarrow_field(bq_field): | |
field_type = bq_field.field_type.lower() | |
if field_type == 'string': | |
arrow_type = pa.string() | |
elif field_type == 'int64': | |
arrow_type = pa.int64() | |
elif field_type == 'integer': | |
arrow_type = pa.int64() | |
elif field_type == 'float': | |
arrow_type = pa.float64() | |
elif field_type == 'float64': | |
arrow_type = pa.float64() | |
elif field_type == 'bool': | |
arrow_type = pa.bool_() | |
elif field_type == 'boolean': | |
arrow_type = pa.bool_() | |
elif field_type == 'timestamp': | |
arrow_type = pa.timestamp('us') | |
elif field_type == 'date': | |
arrow_type = pa.date32() | |
elif field_type == 'datetime': | |
arrow_type = pa.timestamp('s') | |
elif field_type == 'time': | |
arrow_type = pa.time32('us') | |
elif field_type == 'bytes': | |
arrow_type = pa.binary() | |
elif field_type == 'numeric': | |
arrow_type = pa.decimal128(38, 9) | |
else: | |
raise ValueError(f"Unsupported field type: {field_type}") | |
return pa.field(bq_field.name, arrow_type, nullable=bq_field.is_nullable) | |
# Function to convert BigQuery schema to pyarrow schema | |
def bq_schema_to_pyarrow_schema(bq_schema): | |
pyarrow_fields = [bq_to_pyarrow_field(field) for field in bq_schema] | |
return pa.schema(pyarrow_fields) | |
def prepare_df(df, bq_schema): | |
pa_schema = bq_schema_to_pyarrow_schema(bq_schema) | |
df = convert_date_columns(df, get_date_columns(bq_schema)) | |
return pa.Table.from_pandas(df, preserve_index=False).cast(pa_schema).to_pandas() | |
def load_bq(df, schema, table_name, write_disposition="WRITE_EMPTY"): | |
job_config = bigquery.LoadJobConfig( | |
schema=schema, | |
write_disposition=write_disposition | |
) | |
job = client.load_table_from_dataframe( | |
df, table_name, job_config=job_config | |
) # Make an API request. | |
loaded_rows = job.result().output_rows | |
table_info = client.get_table(table_name) | |
print( | |
"Loaded {} rows and {} columns to {}, table now has {}".format( | |
loaded_rows, len(table_info.schema), table_name, table_info.num_rows | |
) | |
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Exemplo de uso | |
some_df = seu_dataframe_ja_modelado | |
# Configurar o schema | |
# Referência: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#TableFieldSchema.FIELDS.type | |
schema = [ | |
bigquery.SchemaField("ANO_MES", bigquery.enums.SqlTypeNames.STRING), | |
bigquery.SchemaField("ID_ASSISTENCIA", bigquery.enums.SqlTypeNames.STRING) | |
] | |
# df_load é o dataframe que será carregado | |
df_load = prepare_df(some_df, schema_acionamentos) | |
# montar table_name no formato dataset.tabela (dataset precisa já existir no BigQuery) | |
table_name = "dataset.tabela" | |
# para carregar a tabela sem sobrescrever (erro se existir a tabela) | |
load_bq(df_load, schema, table_name) | |
# para carregar a tabela apenas acrescentando registros caso a tabela já exista | |
load_bq(df_load, schema, table_name, "WRITE_APPEND") | |
# para carregar a tabela sobrescrevendo tudo | |
load_bq(df_load, schema, table_name, "WRITE_TRUNCATE") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Output: