Skip to content

Instantly share code, notes, and snippets.

@romanmichaelpaolucci
Created September 20, 2020 14:39
lvn_6
import pandas as pd
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
data = pd.read_excel('assets/ENB2012_data.xlsx')
X = data.drop(axis=1, columns=['Y1', 'Y2'])
y = pd.concat([data['Y1'], data['Y2']], axis=1)
network = Sequential()
network.add(Dense(8, input_shape=(8,), activation='relu'))
network.add(Dense(6, activation='relu'))
network.add(Dense(6, activation='relu'))
network.add(Dense(4, activation='relu'))
network.add(Dense(2, activation='relu'))
network.compile('adam', loss='mse', metrics=['mse'])
network.fit(X, y, epochs=1000)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment