Skip to content

Instantly share code, notes, and snippets.

@rooch84 rooch84/Readme.md
Last active May 28, 2020

Embed
What would you like to do?
Statistical Process Control Chart

Here we have Statistical Process Control chart created using d3 (see https://en.wikipedia.org/wiki/Statistical_process_control). The chart uses statistical summaries of the data to define whether fluctuations are caused by random variance or from some external influence causing a change in behaviour. In the latter case, a data point is considered a 'signal' and the process is considered 'out of control'. A more permanent change to the data may result in a process break being inserted, and a new process starts. SPC charts are common in manufacturing, but here we look at crimes per month in the West Midlands region of the UK.

Month Count
2011-01 25515
2011-02 25558
2011-03 28958
2011-04 31273
2011-05 30000
2011-06 29037
2011-07 29893
2011-08 28573
2011-09 24013
2011-10 24289
2011-11 22605
2011-12 20732
2012-01 20904
2012-02 20824
2012-03 22930
2012-04 20534
2012-05 22101
2012-06 20518
2012-07 22703
2012-08 22859
2012-09 20829
2012-10 21354
2012-11 20342
2012-12 19100
2013-01 20461
2013-02 18505
2013-03 19807
2013-04 20479
2013-05 21299
2013-06 21336
2013-07 24096
2013-08 22931
2013-09 20325
2013-10 20648
2013-11 19703
2013-12 18980
2014-01 18631
2014-02 17639
2014-03 20711
2014-04 20163
2014-05 20657
2014-06 21776
2014-07 22892
2014-08 21279
2014-09 21437
2014-10 21095
2014-11 20232
2014-12 18447
2015-01 19095
2015-02 17813
2015-03 19714
2015-04 19820
2015-05 20521
2015-06 21418
2015-07 21754
2015-08 20561
2015-09 20248
2015-10 21384
2015-11 20443
2015-12 19782
2016-01 19871
2016-02 19403
2016-03 20892
2016-04 20316
2016-05 22169
2016-06 21814
2016-07 23221
2016-08 22710
2016-09 22379
2016-10 23893
2016-11 21890
2016-12 21302
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>SPC</title>
<link rel="stylesheet" href="spc.css" type="text/css"></link>
<script src="https://d3js.org/d3.v4.min.js"></script>
<script src="spc.js" type="text/javascript"></script>
</head>
<body>
<div id="spcContainer">
<div id="chartContainer"></div>
<div id="metaContainer">
<div id="leftContainer">
<div class="leftItem title">
Statistical Process Control Chart
</div>
<div class="leftItem">
Crime per month in the West Midlands, UK, from January 2011 to December 2016.
</div>
<div class="leftItem">
Click on a data point to exclude it from statistical analysis.
Click anywhere in the chart to create a manual process break, or click below to automatically detect them.
Disable manual process breaks by clicking on the circle at the top of the break.
</div>
<div class="leftItem">
<input class="button" type="button" onclick="toggleAutoDetect()" value="Toggle Process Break Detection">
</div>
</div>
<div id="spcLegend"></div>
</div>
</div>
<script type="text/javascript">
var dataFile = "crime.csv";
var properties;
var autoDetectProcesses = false;
var data
window.onload = function() {
d3.csv(dataFile, function(error, d) {
if (error) throw error;
data = d;
data.forEach(function(d) {
d.Date = spc.parseTime("%Y-%m")(d.Month);
d.Count = +d.Count;
});
spc.displayChart(data, "#chartContainer", properties = {"autoDetectProcess" : autoDetectProcesses});
spc.drawLegend("#spcLegend");
});
}
toggleAutoDetect = function () {
properties.autoDetectProcess = !properties.autoDetectProcess;
spc.displayChart(data, "#chartContainer", properties);
}
window.onresize = function() {
spc.resizeChart("#chartContainer", properties);
}
</script>
</body>
</html>
.spc__axis--x path {
display: none;
}
.spc__line {
fill: none;
stroke: steelblue;
stroke-width: 1.5px;
}
.spc__point {
stroke: none;
fill: #28556E;
}
.spc__excluded {
fill: gray;
}
.spc__limit {
stroke: #22919E;
stroke-dasharray: "5, 5";
}
.spc__MEAN_LINE {
stroke: #22919E;
}
.spc__hoverLine {
stroke: #BBB;
}
.spc__processLines {
stroke: #DDD;
fill: white;
}
body, html {
margin: 0px;
padding: 0px;
width: 100%;
height: 100%;
}
body {
background: white;
font-family: sans-serif, arial;
font-size: 12px;
}
#spcContainer {
width: 960px;
height: 500px;
}
#chartContainer {
width: 100%;
height: 300px;
}
#spcLegend {
width: 100%;
}
#metaContainer {
height: 180px;
margin: 10px;
display: flex;
justify-content: space-between;
}
#leftContainer {
width: 100%;
display: flex;
flex-direction: column;
justify-content: flex-start;
}
.leftItem {
margin-bottom: 15px;
}
.title {
font-size: 20px;
}
.button {
background: #00BDA6;
padding:10px;
font-size:12px;
text-decoration:none;
color:#fff;
border: 1px solid #00BDA6;
-webkit-user-select: none;
}
.button:hover {
background: #fff;
border: 1px solid #00BDA6;
color: #00BDA6;
}
.button:active {
background: #22919E;
border: 1px solid #22919E;
color: #FFF;
}
/**
* Statistical Process Control Chart
*
* @author Chris Rooney
*
* This library draws an SPC chart based on the input data (see
* https://en.wikipedia.org/wiki/Statistical_process_control).
*
* It uses the d3 data visaulisation library - https://d3js.org/
*/
spc = window.spc || {};
spc = function () {
/* The default size of the data points */
var ICON_SIZE = 9;
/**
* Wrapper for converting a string to date
* @param {string} format - The data format
*/
var parseTime = function(format) {
return d3.timeParse(format);
};
/* Default margin sizes */
var margin = {
top: 20,
right: 20,
bottom: 30,
left: 50
};
/**
* Draws an SPC chart
*
* @param {Array} data - The data to render
* @param {String} container - The container where the chart will be rendered
* @param {Object} properties - Properties to configure the SPC chart
*
* The properties object maintains persistent information regarding the chart,
* but can also be used to override defaults. For example:
* {
* "autoDetectProcess" : false, - Speficies whether the process breaks should be inserted manually.
* "autoDetectUntil" : d3.max(data, function(d) { return d[properties.xData]}), - If the above is true,
only do this up to a certain data (this is more used for demonstration purposes).
* "chartUpdateCallback" = function(p){ }, - Receive an update if the chart is modified.
* "xData" : "Date", - The date data column name
* "yData" : "Count" - The count data column name
* }
*
* So that we can resize the chart, we do only data processing and
* signal detection here, and do the drawing in resizeChart. Since you many want multiple SPC charts drawn,
* nothing persists in this library, and is instead stored in the properties object.
*
*/
displayChart = function(data, container, properties) {
/* Clear the container */
d3.select(container).html("");
/* Add default properties where not specified */
configureProperties(properties, data);
/* Sort the data */
data.sort(function(a,b) {return a[properties.xData]-b[properties.xData];});
/* If we have any outliers that we don't want they we strip them from the data */
var strippedData = [];
data.forEach(function(d) {
var add = true;
for (let i in properties.datesToExclude) {
if (d[properties.xData] == i) {
add = false;
}
}
if (add) {
strippedData.push(d);
}
});
/* Add the SVG container to the parent container */
var g = d3.select(container).append("svg")
.attr("width", '100%')
.attr("height", '100%')
.append("g")
.attr("transform", "translate(" + margin.left + "," + margin.top + ")");
/* We store the x and y scales and axes in the properties object so we can resize. */
properties.x = d3.scaleUtc().rangeRound([0, 0]);
properties.y = d3.scaleLinear().rangeRound([0, 0]),
properties.x.domain(d3.extent(data, function(d) {
return d[properties.xData];
}));
properties.xAxis = d3.axisBottom(properties.x);
properties.xAxis.ticks(8);
g.append("g")
.attr("class", "axis spc__axis--x");
properties.yAxis = d3.axisLeft(properties.y);
var axisY = g.append("g");
axisY.attr("class", "axis spc__axis--y")
.append("text")
.attr("fill", "#000")
.attr("transform", "rotate(-90)")
.attr("y", 6)
.attr("dy", "0.71em")
.style("text-anchor", "end")
.text("Count");
/* We add a line that shows the x poistion of the cursor */
g.append("line").classed("spc__hoverLine", true);
/* We add a groups that contains all the control lines and process break lines */
var processLines = g.append("g").classed("spc__processLines", true);
var controlLines = g.append("g");
/* Append each data point */
var dataDots = g.selectAll("dot").data(data)
.enter().append("g");
dataDots.attr("class", "spc__point")
.attr("v", function(d) {
return d[properties.xData];
})
.on("click", function() {
/* When we click on a data point, toggler whether is should be omitted */
var d1 = d3.select(this).attr("v");
if (d1 in properties.datesToExclude) {
delete properties.datesToExclude[d1];
d3.select(container).html("");
properties.chartUpdateCallback(properties);
displayChart(data, container, properties);
} else {
properties.datesToExclude[d1] = true;
d3.select(container).html("");
properties.chartUpdateCallback(properties);
displayChart(data, container, properties);
}
d3.event.stopPropagation();
});
d3.select(container).select("svg")
.on("mousemove", function() {
/* Move the hover line when we move the cursor */
var x = d3.mouse(this)[0]-margin.left;
if (x > 0) {
d3.select(this).select(".spc__hoverLine").style("display", null);
d3.select(this).select(".spc__hoverLine").attr("x1", x).attr("x2", x);
} else {
d3.select(this).select(".spc__hoverLine").style("display", "none");
}
})
.on("mouseout", function() {
d3.select(this).select(".spc__hoverLine").style("display", "none");
})
.on("click", function() {
/* Create a new process when we click on the chart */
if (properties.autoDetectProcess) {
window.alert("Process breaks can only be set when automatic detection is disabled");
} else {
var xDate = properties.x.invert(d3.mouse(this)[0]-margin.left);
xDate = d3.bisector(function(d) { return d[properties.xData]; }).right(data, xDate, 1);
if (properties.manualProcesses.indexOf(xDate) === -1 && xDate < properties.dates.length) {
properties.manualProcesses.push(xDate);
properties.chartUpdateCallback(properties);
displayChart(data, container, properties);
}
}
});
if (properties.manualProcesses.length == 0 || properties.autoDetectProcess) {
/* If we don't have any process breaks, or we want to autodetect the processes, only create one process to start */
createProcess(properties.processes, 0);
} else {
/* Otherwise, create the manual process breaks */
var prev = 0;
for (let i = 0; i < properties.manualProcesses.length; ++i) {
var p = properties.manualProcesses[i];
createProcess(properties.processes, prev, p-1);
if (i == properties.manualProcesses.length - 1 ) {
createProcess(properties.processes, p, data.length-1);
}
prev = p;
}
}
/* Calculate the signals for each process (we do this iteratively) */
calculateSignals(data, properties.processes, 0, properties.autoDetectProcess, properties.autoDetectUntil, properties.datesToExclude);
/* Track the min and max y value so we can set our axis */
var maxY = 0, minY = Number.MAX_SAFE_INTEGER;
/* Loop through each process */
for (let i = 0; i < properties.processes.length; ++i) {
var process = properties.processes[i];
process.startDate = data[process.startIndex][properties.xData];
process.endDate = data[process.endIndex][properties.xData];
/* Define the process lines */
if (!process.startIndex == 0) {
processLines.append("line").classed("processLine_" + process.startIndex, true);
processLines.append("circle").classed("processSelection_" + process.startIndex, true)
.attr("v", process.startIndex)
.on("click", function() {
val = d3.select(this).attr("v");
for (let v in properties.manualProcesses) {
if (properties.manualProcesses[v] == val) {
properties.manualProcesses.splice(v,1);
properties.chartUpdateCallback(properties);
displayChart(data, container, properties);
}
d3.event.stopPropagation();
}
});
}
/* Define the control lines */
for (let i in ControlLinesEnum) {
g.append("line")
.attr("class", "spc__limit " + ControlLinesEnum[i].id + "_" + process.startIndex)
.attr("stroke-dasharray", ControlLinesEnum[i].dash);
}
controlLines.append("path").datum(data.slice(process.startIndex, process.endIndex+1))
.attr("class", "spc__line spc__line_" + process.startIndex);
/* Draw either a normal data point or a signal */
dataDots.filter(function (d) {
for (let datum of data.slice(process.startIndex, process.endIndex+1)) {
if (datum[properties.xData] == d[properties.xData]) {
return true;
}
}
return false;
}).each(function(d) {
d3.select(this).attr("transform", "translate(" + properties.x(d[properties.xData]) + "," + properties.y(d[properties.yData]) + ")");
if (d[properties.xData] in properties.datesToExclude ) {
d3.select(this).append("circle")
.attr("cx", 0)
.attr("cy", 0)
.attr("r" , ICON_SIZE * 0.5)
.attr("fill", "grey");
} else if (d[properties.xData] in properties.processes[i].signals) {
SignalEnum[properties.processes[i].signals[d[properties.xData]]].shape(d3.select(this), 0, 0, ICON_SIZE);
} else {
d3.select(this).append("rect")
.attr("x", function(d) {
return ICON_SIZE * -0.5;
})
.attr("y", function(d) {
return ICON_SIZE * -0.5;
}).attr("width" , ICON_SIZE).attr("height" , ICON_SIZE);
}
});
/* Detect the max and min control limits */
if (process.mean + 3.5 * process.sd > maxY) {
maxY = process.mean + 3.5 * process.sd;
}
if (process.mean - 3.5 * process.sd < minY) {
minY = process.mean - 3.5 * process.sd;
}
}
/* Update the y domain based on the min and max limits */
properties.y.domain([minY, maxY]);
/* Draw the chart */
resizeChart(container, properties);
};
/**
* Internal function for creating a new process (either manually or automatically).
*
* @param {Array} processes - The current processes
* @param {int} index - The start index of the processes
* @param {int} cap - The end index
*/
createProcess = function(processes, index, cap = -1) {
/* We start with a minimum end index of the start index +
the length of the eight-over-mean process (which is the signal
that triggers an automatic process break) */
var endIndex = index + SignalEnum.EIGHT_OVER_MEAN.length;
if (cap > -1 && endIndex > cap) {
/* If this exceeds the cap then reduce the end index */
endIndex = cap;
}
/* Add the process */
processes.push({
"startIndex" : index,
"endIndex" : endIndex,
"cap" : cap
});
/* If we have more than one process, then cap the
previous process to the start of this one */
if (processes.length > 1) {
processes[processes.length - 2].endIndex = index - 1;
}
}
/**
* Resize an existing SPC chart
*
* @param {String} container - The container where the chart is rendered
* @param {Object} properties - Properties to configure the SPC chart
*/
resizeChart = function(container, properties) {
/* Define the width and height of the chart */
var main = d3.select(container);
var box = d3.select(container).node().getBoundingClientRect();
var width = box.width - margin.right - margin.left;
var height = box.height - margin.top - margin.bottom;
/* Position the X axis */
main.select(".spc__axis--x")
.attr("transform", "translate(0," + height + ")")
/* Set the range of the x and y axes */
properties.x.rangeRound([0, width]);
properties.y.rangeRound([height, 0]);
/* Define the number of ticks based on the size of the chart */
properties.xAxis.ticks(width / 100);
main.select(".spc__axis--x").call(properties.xAxis);
properties.yAxis.ticks(height / 50 );
main.select(".spc__axis--y").call(properties.yAxis);
/* Create a line function for this chart */
var line = d3.line()
.x(function(d) {
return properties.x(d[properties.xData]);
})
.y(function(d) {
return properties.y(d[properties.yData]);
});
/* Position the data points */
main.selectAll(".spc__point").each(function(d) {
d3.select(this).attr("transform", "translate(" + properties.x(d[properties.xData]) + "," + properties.y(d[properties.yData]) + ")");
});
/* Position the process break lines and control limit lines */
for (let j of properties.processes ) {
setLinePos(main.select(".processLine_" + j.startIndex), properties.x(j.startDate), 0, properties.x(j.startDate), height);
main.select(".processSelection_" + j.startIndex).attr("cx", properties.x(j.startDate)).attr("cy", 0.5 * ICON_SIZE).attr("r", 0.5*ICON_SIZE);
for (let i in ControlLinesEnum) {
if (j.startDate != j.endDate) {
setLinePos(main.select("." + ControlLinesEnum[i].id + "_" + j.startIndex), properties.x(j.startDate),
properties.y(j.mean + ControlLinesEnum[i].index * j.sd), properties.x(j.endDate), properties.y(j.mean + ControlLinesEnum[i].index * j.sd));
}
}
main.select(".spc__line_" + j.startIndex).attr("d", line);
}
main.select(".spc__hoverLine").attr("y1", 0).attr("y2", height);
};
/**
* Get the signal data without rendering the chart
*
* @param {Array} data - The data to render
* @param {Object} properties - Properties to configure the signal processing
*/
getSignals = function(data, properties) {
configureProperties(properties, data);
createProcess(properties.processes, 0);
calculateSignals(data, properties.processes, 0, properties.autoDetectProcess, properties.autoDetectUntil, properties.datesToExclude);
}
/**
* Internal function for detecting signals and process breaks
*
* @param {Array} data - The data to render
* @param {Object} processes - Existing processes
* @param {int} pIndex - The current process
* @param {bool} autoDetectProcess - Whether to auto detect process breaks
* @param {Date} autoDetectUntil - The limit for auto detecting process breaks
* @param {Array} datesToExclude - A list of dates to exclude
*/
calculateSignals = function(data, processes, pIndex, autoDetectProcess, autoDetectUntil, datesToExclude) {
/* Get the current process */
var process = processes[pIndex];
var signalTracker = {};
process.signals = {};
/* Cap the end of the process to the last data point, otherwise decrement it by one */
if (process.endIndex >= data.length) {
process.endIndex = data.length - 2;
} else {
process.endIndex--;
}
/* We both detect signals and process breaks here. So we need a bit of trickery to define when we enter this loop.
*
* This process is not very efficient since we need to add one data point at a time to detect whether there has beena process break.
* Since the new data point changes the summary statistics, we need to check all data points every time we add a new one. This gives
* us a running time close to O(n^2).
*
*/
var processFound = false;
while (!processFound && process.endIndex < data.length -1 && (process.cap == -1 || process.endIndex < process.cap) ) {
/* Reset the signal tracking variables and increase the end index by one (inlude a new data point) */
process.endIndex++;
process.signals = {};
signalTracker = {};
for (let i in SignalEnum) {
signalTracker[SignalEnum[i].id] = [];
};
/* generate summary statistics */
var stats = summaryStatistics(data, datesToExclude, process.startIndex, process.endIndex);
process.mean = stats.mean;
process.sd = stats.sd;
/* Loop through all the points in reverse order */
for (var j = process.endIndex; j >= process.startIndex; --j) {
var d = data[j];
if (!(d[properties.xData] in datesToExclude)) {
for (let i in SignalEnum) {
var sig = SignalEnum[i];
/* Check whether any data points are classified as a signal */
if (sig.rule(d[properties.yData], process.mean, process.sd)) {
/* Check whether a run has been detected, or a new process break should be inserted */
processFound = incrementSignal(signalTracker, sig, d[properties.xData], processes, j, j == process.startIndex ? false : autoDetectProcess, autoDetectUntil);
} else {
/* Otherwise, clear the run */
clearSignal(process.signals, signalTracker, sig);
}
/* If we have a process break, exit the loop */
if (processFound) {
break;
}
}
if (processFound) {
break;
}
}
}
if (processFound) {
/* If we have found a new process, regenerate the summary stats excluding the data points from the latest signal */
var stats = summaryStatistics(data, datesToExclude, process.startIndex, process.endIndex);
process.mean = stats.mean;
process.sd = stats.sd;
}
}
/* We flush out any remaining signals from our signal tracker */
for (let i in SignalEnum) {
var val = SignalEnum[i];
if (val.id in signalTracker) {
addSignalToTracker(process.signals, signalTracker, val);
}
};
/* If we have found a process, or we are working through multiple processes, then we recall this function */
if (processFound || pIndex < processes.length - 1) {
calculateSignals(data, processes, pIndex + 1, autoDetectProcess, autoDetectUntil, datesToExclude);
}
};
/**
* Internal - Generate the mean.
*
* @param {Array} data - the data Array
*/
mean = function(data) {
return d3.mean(data, function(d) {
return d[properties.yData];
});
}
/**
* Internal- Generate the standard deviation.
*
* @param {Array} data - the data Array
*/
sd = function(data) {
return d3.deviation(data, function(d) {
return d[properties.yData];
});
}
/**
* Internal - Generate summary statistics from a subset of the data.
*
* @param {Array} data - the data Array
* @param {Array} datesToExclude - an array out outliers
* @param {int} start - the start inedex (inclusive)
* @param {int} end - the end index (exclusive)
*/
summaryStatistics = function(data, datesToExclude, start, end) {
stats = {"mean" : 0, "sd" : 0};
end++;
if (isEmpty(datesToExclude)) {
stats.mean = mean(data.slice(start, end));
stats.sd = sd(data.slice(start, end));
} else {
var tmpData = [];
for (let i = start; i < end; i++) {
if (!(data[i][properties.xData] in datesToExclude)) {
tmpData.push(data[i]);
}
stats.mean = mean(tmpData);
stats.sd = sd(tmpData);
}
}
return stats;
}
/*
* Internal - if we have a signal, incretment the tracker. If we are detecting process breaks and we find one,
* create a new process and return true.
*/
incrementSignal = function(signalTracker, signalType, id, processes, index, autoDetectProcess, autoDetectUntil) {
signalTracker[signalType.id].push(id);
if ((signalType.id == SignalEnum.EIGHT_OVER_MEAN.id || signalType.id == SignalEnum.EIGHT_UNDER_MEAN.id) &&
signalTracker[signalType.id].length == SignalEnum.EIGHT_OVER_MEAN.length && autoDetectProcess && new Date(id) < new Date(autoDetectUntil)) {
createProcess(processes, index);
return true;
}
return false;
}
/*
* Internal - Clear a run of signals if below the expected threshold.
*/
clearSignal = function(signals, signalTracker, signalType) {
addSignalToTracker(signals, signalTracker, signalType);
signalTracker[signalType.id] = [];
}
/*
* Add a new signal to the tracker.
*/
addSignalToTracker = function(signals, signalTracker, signalType) {
if (signalTracker[signalType.id].length >= signalType.length) {
signalTracker[signalType.id].forEach(function (d) {
if ((d in signals && signalType.length < SignalEnum[signals[d]].length) || !(d in signals)) {
signals[d] = signalType.id;
}
});
}
}
/*
* Internal - Set the position of a line
*/
setLinePos = function(e, x1, y1, x2, y2) {
e.attr("x1", x1)
.attr("y1", y1)
.attr("x2", x2)
.attr("y2", y2);
}
/*
* Check whether an object has any children.
*
* @param {Object} obj - The object to check.
*/
isEmpty = function(obj) {
for(let prop in obj) {
if(obj.hasOwnProperty(prop))
return false;
}
return true;
}
/*
* Internal - Configure the properties object based on a default.
*/
configureProperties = function(properties, data) {
defaultProperties = {
"processes" : [],
"manualProcesses" : [],
"autoDetectProcess" : false,
"datesToExclude" : {},
"autoDetectUntil" : 0,
"dates" : [],
"yData" : "Count",
"xData" : "Date",
"chartUpdateCallback" : function(p){}
}
defaultProperties.autoDetectUntil = d3.max(data, function(d) { return d[defaultProperties.xData]}),
data.forEach(function(d) {
defaultProperties.dates.push(d[defaultProperties.xData]);
})
for (let key of Object.keys(defaultProperties)) {
if (!(key in properties)) {
properties[key] = defaultProperties[key];
}
}
properties.manualProcesses.sort(function(a, b) {
return a - b;
});
properties.processes = [];
}
/**
* Control line definitions
*/
ControlLinesEnum = {
UCL3_LINE : {id: "UCL3_LINE", index : 3, "dash": "0"},
UCL2_LINE : {id: "UCL2_LINE", index : 2, "dash": "5, 5"},
UCL1_LINE : {id: "UCL1_LINE", index : 1.5, "dash": "10, 10"},
MEAN_LINE : {id: "spc__MEAN_LINE", index : 0, "dash": "0"},
LCL1_LINE : {id: "LCL1_LINE", index : -1.5, "dash": "10, 10"},
LCL2_LINE : {id: "LCL2_LINE", index : -2, "dash": "5, 5"},
LCL3_LINE : {id: "LCL3_LINE", index : -3, "dash": "0"}
}
/**
* Check whether a signal is above or below the mean.
*
* @param {SignalEnum} sig - The signal to check.
*/
signalIsBelow = function(sig) {
if (SignalEnum[sig].rule(0,1,0)) {
return true;
}
return false;
}
/*
* Signal definitions
*/
SignalEnum = {
EIGHT_OVER_MEAN : { "id" : "EIGHT_OVER_MEAN", "length" : 8, "index" : 4, "rule" : function(v,mean, sd = 0) {
if (v > mean) {
return true;
}
return false;
}, "shape" : function (container, x, y, size) {
createCross(size, x, y, container, "#00BDA6");
},
"desc" : "Eight data points in a row over the mean"},
EIGHT_UNDER_MEAN : { "id" : "EIGHT_UNDER_MEAN", "length" : 8, "index" : 3, "rule" : function(v,mean, sd = 0) {
if (v < mean) {
return true;
}
return false;
}, "shape" : function (container, x, y, size) {
createDiamond(size, x, y, container, "#00BDA6");
},
"desc" : "Eight data points in a row under the mean"},
TWO_OVER_TWO : { "id" : "TWO_OVER_TWO", "length" : 2, "index" : 6, "rule" : function(v,mean,sd) {
if (v > mean + sd * 2) {
return true;
}
return false;
}, "shape" : function (container, x, y, size) {
createCross(size, x, y, container, "#22919E");
},
"desc" : "Two data points in a row over 2 standard deviations above the mean"},
TWO_UNDER_TWO : { "id" : "TWO_UNDER_TWO", "length" : 2, "index" : 1, "rule": function(v,mean, sd) {
if (v < mean - sd * 2) {
return true;
}
return false;
}, "shape" : function (container, x, y, size) {
createDiamond(size, x, y, container, "#22919E");
},
"desc" : "Two data points in a row over 2 standard deviations below the mean"},
THREE_OVER_ONE_FIVE : { "id" : "THREE_OVER_ONE_FIVE", "length" : 3, "index" : 5, "rule": function(v,mean, sd) {
if (v > mean + sd * 1.5) {
return true;
}
return false;
}, "shape" : function (container, x, y, size) {
createCross(size, x, y, container, "#ff7c40");
},
"desc" : "Three data points in a row over 1.5 standard deviations above the mean"},
THREE_UNDER_ONE_FIVE : { "id" : "THREE_UNDER_ONE_FIVE", "length" : 3, "index" : 2, "rule": function(v,mean, sd) {
if (v < mean - sd * 1.5) {
return true;
}
return false;
}, "shape" : function (container, x, y, size) {
createDiamond(size, x, y, container, "#ff7c40");
},
"desc" : "Three data points in a row over 1.5 standard deviations below the mean"},
ONE_OVER_THREE : { "id" : "ONE_OVER_THREE", "length" : 1, "index" : 7, "rule": function(v,mean, sd) {
if (v > mean + sd*3) {
return true;
}
return false;
}, "shape" : function(container, x, y, size) {
createCross(size, x, y, container, "#eb4551");
},
"desc" : "One data point over 3 standard deviations above the mean"},
ONE_UNDER_THREE: { "id" : "ONE_UNDER_THREE", "length" : 1, "index" : 0, "rule": function(v,mean, sd) {
if (v < mean - sd * 3) {
return true;
}
return false;
}, "shape" : function(container, x, y, size) {
createDiamond(size, x, y, container, "#eb4551");
},
"desc" : "One data point over 3 standard deviations below the mean"}
}
/**
* Drawing functions
**/
createCircle = function(size, x, y, container, colour) {
container.append("circle")
.attr("cx", function(d) {
return x;
})
.attr("cy", function(d) {
return y;
})
.attr("r", size / 2)
.attr("fill", colour);
}
createDiamond = function(size, x, y, container, colour) {
var r = size / 2;
container.append('polyline')
.attr('points', function(d) {
return (-r+x) + " " + y
+ " " + x + " " + (-r + y)
+ " " + (r+x) + " " + y
+ " " + x + " " + (r+y)
+ " " + (-r+x) + " " + y;
} )
.attr("fill", colour);
}
createTriangle = function(size, x, y, container, colour) {
var r = size / 2;
container.append('polyline')
.attr('points', function(d) {
return (-r+x) + " " + (r+y)
+ " " + (r+x) + " " + (r+y)
+ " " + x + " " + (-r+y)
+ " " + (-r+x) + " " + (r+y);
})
.attr("fill", colour);
}
createCross = function(size, x, y, container, colour) {
var s = 1.0 / size * (size / 2.5);
var r = size / 2;
container.append("polyline")
.attr('points', function(d) {
return (x - r) + " " + (y - (1-s) * r) // left , above middle
+ " " + (x - (1-s)*r) + " " + (y - r) // near left , top
+ " " + x + " " + (y - s * r) // middle , above middle
+ " " + (x + ((1-s)* r)) + " " + (y - r) // near right, top
+ " " + (x + r) + " " + (y - r + (s * r)) // right, near top
+ " " + (x + s * r) + " " + y // right of middle, middle
+ " " + (x + r) + " " + (y + r - (s * r)) // right, near bottom
+ " " + (x + ((1-s)* r)) + " " + (y + r) // near right, bottom
+ " " + x + " " + (y + s * r) // middle, below middle
+ " " + (x - (1-s)*r) + " " + (y + r) // near left, bottom
+ " " + (x - r) + " " + (y + (1-s) * r) // left, near bottom
+ " " + (x - s * r) + " " + y // left of middle, middle
+ " " + (x - r) + " " + (y - (1-s) * r); // left , near top
} )
.attr("fill", colour);
}
/**
* Draw the signal details
*
* @param {String} container - The container housing the legend
*/
drawLegend = function(container) {
var svg = d3.select(container).append("svg").attr("width", '100%')
.attr("height", '100%');
var width = d3.select(container).node().getBoundingClientRect().width;
var height = d3.select(container).node().getBoundingClientRect().height;
var sigArray = Object.keys(SignalEnum).map(function (key) { return SignalEnum[key]; });
sigArray.sort(function(a,b) { return b.length - a.length });
var numEntries = sigArray.length;
var boxH = height / numEntries;
var c = 0;
for (let sig of sigArray) {
sig.shape(svg, 0.5 * boxH, 0.5 * boxH + c * boxH, ICON_SIZE);
svg.append("text")
.attr("x", boxH)
.attr("y", c * boxH + (0.5 * boxH))
.attr("width", width - boxH)
.attr("height", boxH)
.attr("text-anchor", "start")
.attr("dominant-baseline", "central")
.text(sig.desc)
c++;
}
}
/**
* Declare public functions
*/
return {
"parseTime" : parseTime,
"displayChart" : displayChart,
"resizeChart" : resizeChart,
"getSignals" : getSignals,
"isEmpty" : isEmpty,
"signalIsBelow" : signalIsBelow,
"SignalEnum" : SignalEnum,
"drawLegend" : drawLegend
}
}();
@apmaster

This comment has been minimized.

Copy link

apmaster commented Nov 16, 2019

There is a lot of detail in the chart. Lot of work has been done on this project

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.