Skip to content

Instantly share code, notes, and snippets.

@runekaagaard
Last active June 14, 2016 20:00
Show Gist options
  • Save runekaagaard/fb6d6a7fbda66d3dba6919bf200df516 to your computer and use it in GitHub Desktop.
Save runekaagaard/fb6d6a7fbda66d3dba6919bf200df516 to your computer and use it in GitHub Desktop.
from __future__ import division
from itertools import izip
from math import exp, sqrt
from random import random
from pprint import pprint
"""
Working through http://neuralnetworksanddeeplearning.com and
implementing it in no-library python.
"""
W = 0 # Weights
B = 1 # Biases
Z = 2 # Weighted inputs
ZD = 3 # Weighted inputs derived
A = 4 # Activations (output)
E = 5 # Errors
def dot(a, b):
return sum(x * y for x, y in izip(a, b))
def dot_many(xs, b):
return [dot(x, b) for x in xs]
def minus(a, b):
return [x - y for x, y in izip(a, b)]
def plus(a, b):
return [x + y for x, y in izip(a, b)]
def hadamard(a, b):
return [x * y for x, y in izip(a, b)]
def mult_matrix_vector(m, v):
return [dot(x, v) for x in m]
def sigmoid(xs):
return [1/(1+exp(-x)) for x in xs]
def sigmoid_prime(xs):
return [x * (1-x) for x in xs]
def error_output(network, training):
network[-1][E] = hadamard(minus(network[-1][A], training),
network[-1][ZD])
def error_hidden(network, i):
network[i][E] = hadamard(
mult_matrix_vector(network[i+1][W], network[i+1][E]),
network[i][ZD]
)
def feed_forward(network, act_func=sigmoid):
for i, layer in enumerate(network[1:], 1):
layer[Z] = plus(dot_many(layer[W], network[i-1][A]), layer[B])
layer[ZD] = sigmoid_prime(layer[Z])
layer[A] = act_func(layer[Z])
def backpropagate(network, training_data):
error_output(TEST_NETWORK, training_data)
for i in xrange(len(TEST_NETWORK)-2, 0, -1):
error_hidden(TEST_NETWORK, i)
def gradient_descent(network, learning_rate):
for i in xrange(len(TEST_NETWORK)-1, 0, -1):
for j, weights in enumerate(network[i][W]):
for k, weight in enumerate(weights):
network[i][W][j][k] += (learning_rate * network[i-1][A][k]
* network[i][E][j])
network[i][B][k] += learning_rate * network[i][E][j]
assert dot([1, 3, -5], [4, -2, -1]) == 3
assert minus([1,4], [1, 5]) == [0, -1]
assert mult_matrix_vector([[1, -1, 2], [0, -3, 1]], [2, 1, 0]) == [1, -3]
TEST_NETWORK = [
[
None, # weights
None, # biases
None, # weighted inputs
None, # weighted inputs derirative
[.05, .10], # outputs
None, # errors
],
[
[[.15, .20],[.25, .30]], # weights
[.35, .35], # biases
None, # weighted inputs
None, # weighted inputs derirative
None, # outputs
None, # errors
],
[
[[.40, .45],[.50, .55]], # weights
[.60, .60], # biases
None, # weighted inputs
None, # weighted inputs derirative
None, # outputs
None, # errors
]
]
i = 0
while True:
i += 1
feed_forward(TEST_NETWORK)
backpropagate(TEST_NETWORK, [.8, .9])
gradient_descent(TEST_NETWORK, 0.0003)
if i % 10000 == 0:
print "Outputs:", TEST_NETWORK[-1][A]
print "Errors:", TEST_NETWORK[-1][E]
print
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment