Skip to content

Instantly share code, notes, and snippets.

View rwchakra's full-sized avatar

rwiddhi chakraborty rwchakra

  • Switzerland
View GitHub Profile
['\n', ' ', '!', "'", '(', ')', '*', ',', '-', '.', '0',
'1', '2', '3', '4', '5', '6', '7', '8', '9', ':', ';',
'?', '\\', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i',
'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't',
'u', 'v', 'w', 'x', 'y', 'z', '{', '}']
to_remove = {'\n', '\\','{', '}'}
new_data = ''.join(char for char in data if char not in to_remove)
unique_chars = sorted(list(set(new_data)))
'''
[' ', '!',"'",'(', ')', '*', ',', '-', '.', '0', '1', '2', '3',
'4', '5', '6', '7', '8', '9', ':', ';', '?', 'a', 'b', 'c', 'd',
'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q',
with open('bible.txt.rtf', encoding = 'utf-8', errors = 'ignore') as f:
data = f.read()
data = data.lower()
print(data[500:550], data[0:65])
'''
('ed the heaven and the earth.\\\n\\\n1:2 and the earth ',
'{\\rtf1\\ansi\\ansicpg1252\\cocoartf1671\\cocoasubrtf500\n{\\fonttbl\\f0\\')
'''
@rwchakra
rwchakra / train.py
Last active December 14, 2020 18:54
from keras.callbacks import ModelCheckpoint
from keras.callbacks import CSVLogger
from keras.callbacks import EarlyStopping
from keras.optimizers import Adam
import model
NO_OF_TRAINING_IMAGES = len(os.listdir('/your_data/train_frames/train/'))
NO_OF_VAL_IMAGES = len(os.listdir('/your_data/val_frames/val/'))
import cv2
def data_gen(img_folder, mask_folder, batch_size):
c = 0
n = os.listdir(img_folder) #List of training images
random.shuffle(n)
while (True):
img = np.zeros((batch_size, 512, 512, 3)).astype('float')
mask = np.zeros((batch_size, 512, 512, 1)).astype('float')
train_image_generator = train_datagen.flow_from_directory(
'data/train_frames/train',
batch_size = #NORMALLY 4/8/16/32)
train_mask_generator = train_datagen.flow_from_directory(
'data/train_masks/train',
batch_size = #NORMALLY 4/8/16/32)
val_image_generator = val_datagen.flow_from_directory(
'data/val_frames/val',
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
val_datagen = ImageDataGenerator(rescale=1./255)
import os
import random
import re
from PIL import Image
DATA_PATH = '/path/to/your/data_dir'
FRAME_PATH = DATA_PATH+'/frames'
MASK_PATH = DATA_PATH+'/masks'
subjects = ['English', 'Physics', 'Math', 'Chemistry', 'Economics']
grades = [85, 91, 90, 90, 95]
marks = {}
performance = zip(subjects, grades)
print performance #-> [('English', 85), ('Physics', 91), ('Math', 90), ('Chemistry', 90), ('Economics', 95)]
marks = dict(performance)
# -*- coding: utf-8 -*-
sentence = "There will be a full moon tonight. It’s going to be beautiful!"
vowel_count = {}
vowels = ['a', 'e', 'i', 'o', 'u']
for char in sentence:
if char in vowels:
vowel_count[char] = vowel_count.get(char, 0) + 1