Catholics PID Changes 2018
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
### PID Ribbons White and Non-white #### | |
dd18 <- dfp %>% | |
filter(race ==1) %>% | |
filter(religpew ==2) %>% | |
filter(pid7 <= 7) %>% | |
mutate(att = recode(pew_churatd, "1=6; 2=5; 3=4; 4=3; 5=2; 6=1; else = NA")) %>% | |
group_by(att) %>% | |
mean_ci(pid7, wt = weight_DFP, ci = .84) %>% | |
mutate(att = frcode(att == 1 ~ "Never", | |
att == 2 ~ "Seldom", | |
att == 3 ~ "Yearly", | |
att == 4 ~ "Monthly", | |
att == 5 ~ "Weekly", | |
att == 6 ~ "Weekly+", | |
att == 7 ~ "Don`t Know", | |
TRUE ~ "REMOVE")) %>% | |
mutate(year = 2018) %>% | |
mutate(group = "White") | |
dd16 <- cces16 %>% | |
filter(race ==1) %>% | |
filter(religpew ==2) %>% | |
filter(pew_bornagain ==1) %>% | |
filter(pid7 <= 7) %>% | |
mutate(att = recode(pew_churatd, "1=6; 2=5; 3=4; 4=3; 5=2; 6=1; else = NA")) %>% | |
group_by(att) %>% | |
mean_ci(pid7, wt = commonweight_vv, ci = .84) %>% | |
mutate(att = frcode(att == 1 ~ "Never", | |
att == 2 ~ "Seldom", | |
att == 3 ~ "Yearly", | |
att == 4 ~ "Monthly", | |
att == 5 ~ "Weekly", | |
att == 6 ~ "Weekly+", | |
att == 7 ~ "Don`t Know", | |
TRUE ~ "REMOVE")) %>% | |
mutate(year = 2016) %>% | |
mutate(group = "White") | |
dd14 <- cces14 %>% | |
filter(race ==1) %>% | |
filter(religpew ==1) %>% | |
filter(pid7 <= 7) %>% | |
mutate(att = recode(pew_churatd, "1=6; 2=5; 3=4; 4=3; 5=2; 6=1; else = NA")) %>% | |
group_by(att) %>% | |
mean_ci(pid7, wt = weight, ci = .84) %>% | |
mutate(att = frcode(att == 1 ~ "Never", | |
att == 2 ~ "Seldom", | |
att == 3 ~ "Yearly", | |
att == 4 ~ "Monthly", | |
att == 5 ~ "Weekly", | |
att == 6 ~ "Weekly+", | |
att == 7 ~ "Don`t Know", | |
TRUE ~ "REMOVE")) %>% | |
mutate(year = 2014) %>% | |
mutate(group = "White") | |
dd12 <- cces12 %>% | |
filter(race ==1) %>% | |
filter(religpew ==2) %>% | |
filter(pid7 <= 7) %>% | |
mutate(att = recode(pew_churatd, "1=6; 2=5; 3=4; 4=3; 5=2; 6=1; else = NA")) %>% | |
group_by(att) %>% | |
mean_ci(pid7, wt = weight_vv, ci = .84) %>% | |
mutate(att = frcode(att == 1 ~ "Never", | |
att == 2 ~ "Seldom", | |
att == 3 ~ "Yearly", | |
att == 4 ~ "Monthly", | |
att == 5 ~ "Weekly", | |
att == 6 ~ "Weekly+", | |
att == 7 ~ "Don`t Know", | |
TRUE ~ "REMOVE")) %>% | |
mutate(year = 2012) %>% | |
mutate(group = "White") | |
dd10 <- cces10 %>% | |
filter(V211 ==1) %>% | |
filter(V219 ==2) %>% | |
mutate(att = recode(V217, "1=6; 2=5; 3=4; 4=3; 5=2; 6=1; else = NA")) %>% | |
mutate(pid7 = case_when(CC421b == 1 ~ 3, | |
CC421b == 2 ~ 5, | |
CC421b == 3 ~ 4, | |
CC421_rep == 1 ~ 7, | |
CC421_rep == 2 ~ 6, | |
CC421_dem == 1 ~ 1, | |
CC421_dem == 2 ~ 2)) %>% | |
group_by(att) %>% | |
mean_ci(pid7, wt = V101, ci = .84) %>% | |
mutate(att = frcode(att == 1 ~ "Never", | |
att == 2 ~ "Seldom", | |
att == 3 ~ "Yearly", | |
att == 4 ~ "Monthly", | |
att == 5 ~ "Weekly", | |
att == 6 ~ "Weekly+", | |
att == 7 ~ "Don`t Know", | |
TRUE ~ "REMOVE")) %>% | |
mutate(year = 2010) %>% | |
mutate(group = "White") | |
dd08 <- cces08 %>% | |
filter(V211 ==1) %>% | |
filter(V219 ==2) %>% | |
filter(CC307a <= 7) %>% | |
mutate(att = recode(V217, "1=6; 2=5; 3=4; 4=3; 5=2; 6=1; else = NA")) %>% | |
group_by(att) %>% | |
mean_ci(CC307a, wt = V201, ci = .84) %>% | |
mutate(att = frcode(att == 1 ~ "Never", | |
att == 2 ~ "Seldom", | |
att == 3 ~ "Yearly", | |
att == 4 ~ "Monthly", | |
att == 5 ~ "Weekly", | |
att == 6 ~ "Weekly+", | |
att == 7 ~ "Don`t Know", | |
TRUE ~ "REMOVE")) %>% | |
mutate(year = 2008) %>% | |
mutate(group = "White") | |
dd18a <- dfp %>% | |
filter(race !=1) %>% | |
filter(religpew ==2) %>% | |
filter(pid7 <= 7) %>% | |
mutate(att = recode(pew_churatd, "1=6; 2=5; 3=4; 4=3; 5=2; 6=1; else = NA")) %>% | |
group_by(att) %>% | |
mean_ci(pid7, wt = weight_DFP, ci = .84) %>% | |
mutate(att = frcode(att == 1 ~ "Never", | |
att == 2 ~ "Seldom", | |
att == 3 ~ "Yearly", | |
att == 4 ~ "Monthly", | |
att == 5 ~ "Weekly", | |
att == 6 ~ "Weekly+", | |
att == 7 ~ "Don`t Know", | |
TRUE ~ "REMOVE")) %>% | |
mutate(year = 2018) %>% | |
mutate(group = "Non-White") | |
dd16a <- cces16 %>% | |
filter(race !=1) %>% | |
filter(religpew ==2) %>% | |
filter(pew_bornagain ==1) %>% | |
filter(pid7 <= 7) %>% | |
mutate(att = recode(pew_churatd, "1=6; 2=5; 3=4; 4=3; 5=2; 6=1; else = NA")) %>% | |
group_by(att) %>% | |
mean_ci(pid7, wt = commonweight_vv, ci = .84) %>% | |
mutate(att = frcode(att == 1 ~ "Never", | |
att == 2 ~ "Seldom", | |
att == 3 ~ "Yearly", | |
att == 4 ~ "Monthly", | |
att == 5 ~ "Weekly", | |
att == 6 ~ "Weekly+", | |
att == 7 ~ "Don`t Know", | |
TRUE ~ "REMOVE")) %>% | |
mutate(year = 2016) %>% | |
mutate(group = "Non-White") | |
dd14a <- cces14 %>% | |
filter(race !=1) %>% | |
filter(religpew ==1) %>% | |
filter(pid7 <= 7) %>% | |
mutate(att = recode(pew_churatd, "1=6; 2=5; 3=4; 4=3; 5=2; 6=1; else = NA")) %>% | |
group_by(att) %>% | |
mean_ci(pid7, wt = weight, ci = .84) %>% | |
mutate(att = frcode(att == 1 ~ "Never", | |
att == 2 ~ "Seldom", | |
att == 3 ~ "Yearly", | |
att == 4 ~ "Monthly", | |
att == 5 ~ "Weekly", | |
att == 6 ~ "Weekly+", | |
att == 7 ~ "Don`t Know", | |
TRUE ~ "REMOVE")) %>% | |
mutate(year = 2014) %>% | |
mutate(group = "Non-White") | |
dd12a <- cces12 %>% | |
filter(race !=1) %>% | |
filter(religpew ==2) %>% | |
filter(pid7 <= 7) %>% | |
mutate(att = recode(pew_churatd, "1=6; 2=5; 3=4; 4=3; 5=2; 6=1; else = NA")) %>% | |
group_by(att) %>% | |
mean_ci(pid7, wt = weight_vv, ci = .84) %>% | |
mutate(att = frcode(att == 1 ~ "Never", | |
att == 2 ~ "Seldom", | |
att == 3 ~ "Yearly", | |
att == 4 ~ "Monthly", | |
att == 5 ~ "Weekly", | |
att == 6 ~ "Weekly+", | |
att == 7 ~ "Don`t Know", | |
TRUE ~ "REMOVE")) %>% | |
mutate(year = 2012) %>% | |
mutate(group = "Non-White") | |
dd10a <- cces10 %>% | |
filter(V211 !=1) %>% | |
filter(V219 ==2) %>% | |
mutate(att = recode(V217, "1=6; 2=5; 3=4; 4=3; 5=2; 6=1; else = NA")) %>% | |
mutate(pid7 = case_when(CC421b == 1 ~ 3, | |
CC421b == 2 ~ 5, | |
CC421b == 3 ~ 4, | |
CC421_rep == 1 ~ 7, | |
CC421_rep == 2 ~ 6, | |
CC421_dem == 1 ~ 1, | |
CC421_dem == 2 ~ 2)) %>% | |
group_by(att) %>% | |
mean_ci(pid7, wt = V101, ci = .84) %>% | |
mutate(att = frcode(att == 1 ~ "Never", | |
att == 2 ~ "Seldom", | |
att == 3 ~ "Yearly", | |
att == 4 ~ "Monthly", | |
att == 5 ~ "Weekly", | |
att == 6 ~ "Weekly+", | |
att == 7 ~ "Don`t Know", | |
TRUE ~ "REMOVE")) %>% | |
mutate(year = 2010) %>% | |
mutate(group = "Non-White") | |
dd08a <- cces08 %>% | |
filter(V211 !=1) %>% | |
filter(V219 ==2) %>% | |
filter(CC307a <= 7) %>% | |
mutate(att = recode(V217, "1=6; 2=5; 3=4; 4=3; 5=2; 6=1; else = NA")) %>% | |
group_by(att) %>% | |
mean_ci(CC307a, wt = V201, ci = .84) %>% | |
mutate(att = frcode(att == 1 ~ "Never", | |
att == 2 ~ "Seldom", | |
att == 3 ~ "Yearly", | |
att == 4 ~ "Monthly", | |
att == 5 ~ "Weekly", | |
att == 6 ~ "Weekly+", | |
att == 7 ~ "Don`t Know", | |
TRUE ~ "REMOVE")) %>% | |
mutate(year = 2008) %>% | |
mutate(group = "Non-White") | |
graph <- bind_df("dd") %>% | |
filter(att != "REMOVE") %>% | |
mutate(year = as.factor(year)) | |
graph %>% | |
ggplot(., aes(x= att, y = mean, group = group, color = group)) + | |
geom_point() + | |
geom_line(size = 1) + | |
theme_gg("Abel") + | |
facet_wrap(~ year) + | |
geom_ribbon(aes(ymin=lower, ymax=upper, color = group, fill = group), alpha = .05, show.legend = FALSE) + | |
scale_fill_d3() + | |
scale_color_d3() + | |
scale_y_continuous(limits = c(1,7), breaks = c(1,2,3,4,5,6,7), labels = c("Strong Democrat", "Not Strong Democrat", "Lean Democrat", "Independent", "Lean Republican", "Not Strong Republican", "Strong Republican")) + | |
labs(x ="Church Attendance", y = "Mean Party Identification", subtitle = "Among Catholics", title = "Catholic Partisanship at Each Attendance Level", caption = "Data: CCES (2012-2016) and Data for Progress (2018)") + | |
theme(legend.position = "bottom") + | |
theme(legend.title=element_blank()) + | |
theme(axis.text.x = element_text(size = 9)) + | |
ggsave("D://dfp/pid_ribbons_catholics.png", width = 10) | |
## Abortion by Race #### | |
abg <- cces16 %>% | |
mutate(ab1 = recode(CC16_332a, "2=1; 1=0; else = NA")) %>% | |
mutate(ab2 = recode(CC16_332c, "1=1; 2=0; else = NA")) %>% | |
mutate(ab3 = recode(CC16_332d, "1=1; 2=0; else = NA")) %>% | |
mutate(ab4 = recode(CC16_332e, "1=1; 2=0; else = NA")) %>% | |
mutate(ab5 = recode(CC16_332f, "1=1; 2=0; else = NA")) %>% | |
mutate(abort = ab1 + ab2 + ab3 + ab4 + ab5) %>% | |
filter(abort != "NA") %>% | |
filter(religpew ==2) %>% | |
mutate(race2 = car::recode(race, "1='White'; else ='Non-White '")) %>% | |
group_by(race2) %>% | |
ct(abort, wt = commonweight_vv) | |
g1 <- abg %>% | |
ggplot(.,aes(x = abort, y = pct, fill = race2)) + | |
geom_col(color = "black", position = "dodge") + | |
# facet_wrap(~ race2, ncol= 2) + | |
# scale_fill_manual(values = c("dodgerblue3", "azure3", "firebrick3")) + | |
theme_gg("Abel") + | |
scale_fill_d3() + | |
scale_y_continuous(labels = percent, limits = c(0, .400)) + | |
theme(legend.position = c(.5, .85)) + | |
theme(legend.direction = "horizontal") + | |
labs(x = "<- More Pro-Choice:More Pro-Life -->", y = "", title = "Distribution of Abortion Opinion by Race", subtitle = "Catholics", caption = "") + | |
geom_text(aes(y = pct + .01, label = paste0(pct*100, '%')), position = position_dodge(width = .9), size = 3, family = "font") + | |
ggsave("D://dfp/abort_catholic.png") | |
abg1 <- cces16 %>% | |
mutate(ab1 = recode(CC16_332a, "2=1; 1=0; else = NA")) %>% | |
mutate(ab2 = recode(CC16_332c, "1=1; 2=0; else = NA")) %>% | |
mutate(ab3 = recode(CC16_332d, "1=1; 2=0; else = NA")) %>% | |
mutate(ab4 = recode(CC16_332e, "1=1; 2=0; else = NA")) %>% | |
mutate(ab5 = recode(CC16_332f, "1=1; 2=0; else = NA")) %>% | |
mutate(abort = ab1 + ab2 + ab3 + ab4 + ab5) %>% | |
filter(abort != "NA") %>% | |
filter(evangelical ==1) %>% | |
mutate(race2 = car::recode(race, "1='White'; else ='Non-White '")) %>% | |
group_by(race2) %>% | |
ct(abort, wt = commonweight_vv) | |
g2 <- abg1 %>% | |
ggplot(.,aes(x = abort, y = pct, fill = race2)) + | |
geom_col(color = "black", position = "dodge") + | |
# facet_wrap(~ race2, ncol= 2) + | |
# scale_fill_manual(values = c("dodgerblue3", "azure3", "firebrick3")) + | |
theme_gg("Abel") + | |
scale_fill_d3() + | |
scale_y_continuous(labels = percent, limits = c(0, .400)) + | |
theme(legend.position = c(.5, .85)) + | |
theme(legend.direction = "horizontal") + | |
labs(x = "<- More Pro-Choice:More Pro-Life -->", y = "", title = "", subtitle = "Evangelicals", caption = "Data: CCES 2016") + | |
geom_text(aes(y = pct + .01, label = paste0(pct*100, '%')), position = position_dodge(width = .9), size = 3, family = "font") + | |
ggsave("D://dfp/abort_evangelical.png") | |
abg2 <- cces16 %>% | |
mutate(ab1 = recode(CC16_332a, "2=1; 1=0; else = NA")) %>% | |
mutate(ab2 = recode(CC16_332c, "1=1; 2=0; else = NA")) %>% | |
mutate(ab3 = recode(CC16_332d, "1=1; 2=0; else = NA")) %>% | |
mutate(ab4 = recode(CC16_332e, "1=1; 2=0; else = NA")) %>% | |
mutate(ab5 = recode(CC16_332f, "1=1; 2=0; else = NA")) %>% | |
mutate(abort = ab1 + ab2 + ab3 + ab4 + ab5) %>% | |
filter(abort != "NA") %>% | |
mutate(race2 = car::recode(race, "1='White'; else ='Non-White '")) %>% | |
group_by(race2) %>% | |
ct(abort, wt = commonweight_vv) | |
g3 <- abg2 %>% | |
ggplot(.,aes(x = abort, y = pct, fill = race2)) + | |
geom_col(color = "black", position = "dodge") + | |
# facet_wrap(~ race2, ncol= 2) + | |
# scale_fill_manual(values = c("dodgerblue3", "azure3", "firebrick3")) + | |
theme_gg("Abel") + | |
scale_fill_d3() + | |
scale_y_continuous(labels = percent, limits = c(0, .400)) + | |
theme(legend.position = c(.5, .85)) + | |
theme(legend.direction = "horizontal") + | |
labs(x = "<- More Pro-Choice:More Pro-Life -->", y = "", title = "", subtitle = "Entire Sample", caption = "") + | |
geom_text(aes(y = pct + .01, label = paste0(pct*100, '%')), position = position_dodge(width = .9), size = 3, family = "font") + | |
ggsave("D://dfp/abort_all.png") | |
abg3 <- cces16 %>% | |
mutate(ab1 = recode(CC16_332a, "2=1; 1=0; else = NA")) %>% | |
mutate(ab2 = recode(CC16_332c, "1=1; 2=0; else = NA")) %>% | |
mutate(ab3 = recode(CC16_332d, "1=1; 2=0; else = NA")) %>% | |
mutate(ab4 = recode(CC16_332e, "1=1; 2=0; else = NA")) %>% | |
mutate(ab5 = recode(CC16_332f, "1=1; 2=0; else = NA")) %>% | |
mutate(abort = ab1 + ab2 + ab3 + ab4 + ab5) %>% | |
filter(abort != "NA") %>% | |
filter(none ==1) %>% | |
mutate(race2 = car::recode(race, "1='White'; else ='Non-White '")) %>% | |
group_by(race2) %>% | |
ct(abort, wt = commonweight_vv) | |
g4 <- abg3 %>% | |
ggplot(.,aes(x = abort, y = pct, fill = race2)) + | |
geom_col(color = "black", position = "dodge") + | |
# facet_wrap(~ race2, ncol= 2) + | |
# scale_fill_manual(values = c("dodgerblue3", "azure3", "firebrick3")) + | |
theme_gg("Abel") + | |
scale_fill_d3() + | |
scale_y_continuous(labels = percent, limits = c(0, .400)) + | |
theme(legend.position = c(.5, .85)) + | |
theme(legend.direction = "horizontal") + | |
labs(x = "<- More Pro-Choice:More Pro-Life -->", y = "", title = "", subtitle = "Nones", caption = "") + | |
geom_text(aes(y = pct + .01, label = paste0(pct*100, '%')), position = position_dodge(width = .9), size = 3, family = "font") + | |
ggsave("D://dfp/abort_nones.png") | |
both <- g1 + g3 + g4 + g2 + plot_layout(ncol =2) | |
ggsave("D://dfp/abort_four_patches.png", both, width = 10, height = 8) | |
### Approve of Trump ### | |
heat <- dfp %>% | |
# filter(race ==1) %>% | |
filter(religpew ==2) %>% | |
mutate(att = frcode(pew_churatd == 6 ~ "Never", | |
pew_churatd == 5 ~ "Seldom", | |
pew_churatd == 4 ~ "Yearly", | |
pew_churatd == 3 ~ "Monthly", | |
pew_churatd == 2 ~ "Weekly", | |
pew_churatd == 1 ~ "Weekly+")) %>% | |
filter(app_dtrmp <= 4) %>% | |
mutate(tr = frcode(app_dtrmp == 4 ~ "Strongly Disapprove", | |
app_dtrmp == 3 ~ "Somewhat Disapprove", | |
app_dtrmp == 2 ~ "Somewhat Approve", | |
app_dtrmp == 1 ~ "Strongly Approve")) %>% | |
select(att, tr) %>% | |
group_by(att) %>% | |
ct(tr) %>% | |
ungroup(att) | |
heat %>% | |
filter(att != "NA") %>% | |
ggplot(., aes(x= att, y = tr)) + | |
geom_tile(aes(fill = pct), color = "black") + | |
scale_fill_gradient(low = "azure3", high = "#E94057") + | |
theme_gg("Abel") + | |
geom_text(aes(x= att, y = tr, label = paste0(pct*100, '%')), size = 4, family = "font") + | |
labs(x= "", y = "", title = "Job Approval for President Trump", subtitle = "Among Catholics", caption = "Data: Data for Progress (2018)") + | |
ggsave("D://dfp/heatmap_catholic.png", width = 6) | |
### Favorability Graph #### | |
## Favorability Graph #### | |
favor_fun <- function(df, var, var1){ | |
var <- enquo(var) | |
df1 <- df %>% | |
filter(religpew ==2) %>% | |
filter(pew_bornagain ==1) %>% | |
filter(!! var <= 4) %>% | |
mutate(ques = recode(!! var, "1=4; 2=3; 3=2; 4=1")) %>% | |
mean_ci(ques, wt = weight_DFP, ci = .84) %>% | |
mutate(group = var1) %>% | |
mutate(sample = "Catholics") | |
df2 <- df %>% | |
filter(!! var <= 4) %>% | |
mutate(ques = recode(!! var, "1=4; 2=3; 3=2; 4=1")) %>% | |
mean_ci(ques, wt = weight_DFP, ci = .84) %>% | |
mutate(group = var1) %>% | |
mutate(sample = "Entire Sample") | |
df3 <- df %>% | |
filter(pid3 ==3) %>% | |
filter(!! var <= 4) %>% | |
mutate(ques = recode(!! var, "1=4; 2=3; 3=2; 4=1")) %>% | |
mean_ci(ques, wt = weight_DFP, ci = .84) %>% | |
mutate(group = var1) %>% | |
mutate(sample = "Independents") | |
bind_rows(df1, df2, df3) | |
} | |
eee1 <- dfp %>% favor_fun(favor_labor, "Labor Unions") | |
eee2 <- dfp %>% favor_fun(favor_dem, "Democratic Party") | |
eee3 <- dfp %>% favor_fun(favor_rep, "Republican Party") | |
eee4 <- dfp %>% favor_fun(favor_aca, "Obamacare/ACA") | |
eee5 <- dfp %>% favor_fun(favor_dtrump, "Trump") | |
eee6 <- dfp %>% favor_fun(favor_mcconnell, "McConnell") | |
eee7 <- dfp %>% favor_fun(favor_demcong, "Dem. in Congress") | |
eee8 <- dfp %>% favor_fun(favor_repcong, "Rep. in Congress") | |
eee9 <- dfp %>% favor_fun(favor_metoo, "MeToo") | |
eee10 <- dfp %>% favor_fun(favor_blm, "Black Lives Matter") | |
graph <- bind_df("eee") | |
graph %>% | |
ggplot(., aes(y=mean, x= fct_reorder(group, mean), color = sample)) + | |
geom_point(position=position_dodge(width=0.5), size =4) + | |
geom_errorbar(aes(ymin = lower, ymax=upper), position=position_dodge(0.5), size = 1) + | |
coord_flip() + | |
theme_gg("Abel") + | |
labs(title = "Favorability of Various Groups", x = "", y = "Level of Favorability", caption = "Data: Data for Progress (2018)") + | |
scale_y_continuous(limits = c(0.85,4.05), breaks = c(1,2,3,4), labels = c("Very Unfavorable", "Somewhat Unfavorable", "Somewhat Favorable", "Very Favorable")) + | |
scale_color_npg() + | |
theme(legend.position = "bottom") + | |
theme(legend.title=element_blank()) + | |
theme(text=element_text(size=28, family="font")) + | |
ggsave("D://dfp/group_like_catholics.png", height = 8, width =16) | |
## Vote Choice in 2016 #### | |
gg1 <- cces16 %>% | |
filter(religpew ==2) %>% | |
filter(race ==1) %>% | |
filter(CC16_410a <= 2) %>% | |
ct(CC16_410a, wt = commonweight_vv_post) %>% | |
mutate(vote16 = frcode(CC16_410a ==1 ~ "Trump", | |
CC16_410a ==2 ~ "Clinton", | |
CC16_410a ==3 ~ "Johnson", | |
CC16_410a ==4 ~ "Stein")) | |
bar1 <- gg1 %>% | |
ggplot(., aes(x =1, y = pct, fill = vote16)) + | |
geom_col(color = "black") + | |
coord_flip() + | |
scale_fill_manual(values = c("firebrick3", "dodgerblue3")) + | |
theme_gg("Abel") + | |
theme(legend.position = "none") + | |
theme(axis.title.y=element_blank(), axis.text.y=element_blank(), axis.ticks.y=element_blank())+ | |
scale_y_continuous(labels = percent) + | |
geom_text(aes(label = paste0(pct*100, '%')), position = position_stack(vjust = 0.5), size = 6, family = "font") + | |
annotate("text", x= .75, y = .203, label = "Clinton", size = 6, family = "font") + | |
annotate("text", x= .75, y = .703, label = "Trump", size = 6, family = "font") + | |
labs(x = "", y = "", title = "White Catholic Vote Choice in 2016", caption = "Data: CCES 2016") + | |
ggsave("D://dfp/catholic16vote.png", height = 2) | |
gg2 <- dfp %>% | |
filter(religpew ==2) %>% | |
filter(race ==1) %>% | |
filter(djtrelct !=3) %>% | |
ct(djtrelct, wt = weight_DFP) %>% | |
mutate(vote20 = frcode(djtrelct ==1 ~ "Yes", | |
djtrelct ==2 ~ "No", | |
djtrelct ==3 ~ "Not Sure")) | |
bar2 <- gg2 %>% | |
ggplot(., aes(x =1, y = pct, fill = vote20)) + | |
geom_col(color = "black") + | |
coord_flip() + | |
scale_fill_manual(values = c("firebrick3", "dodgerblue3", "azure3")) + | |
theme_gg("Abel") + | |
theme(legend.position = "none") + | |
theme(axis.title.y=element_blank(), axis.text.y=element_blank(), axis.ticks.y=element_blank())+ | |
scale_y_continuous(labels = percent) + | |
geom_text(aes(label = paste0(pct*100, '%')), position = position_stack(vjust = 0.5), size = 6, family = "font") + | |
annotate("text", x= .75, y = .196, label = "No", size = 6, family = "font") + | |
annotate("text", x= .75, y = .696, label = "Yes", size = 6, family = "font") + | |
labs(x = "", y = "", title = "Would You Vote to Re-elect Trump in 2020? (Among White Catholics)", caption = "Data: Data for Progress (2018)") + | |
ggsave("D://dfp/catholic20vote.png", height = 2) | |
both <- bar1 + bar2 + plot_layout(ncol =1) | |
ggsave("D://dfp/vote16_20_white.png", both) | |
gg1 <- cces16 %>% | |
filter(religpew ==2) %>% | |
filter(race !=1) %>% | |
filter(CC16_410a <= 2) %>% | |
ct(CC16_410a, wt = commonweight_vv_post) %>% | |
mutate(vote16 = frcode(CC16_410a ==1 ~ "Trump", | |
CC16_410a ==2 ~ "Clinton", | |
CC16_410a ==3 ~ "Johnson", | |
CC16_410a ==4 ~ "Stein")) | |
bar1 <- gg1 %>% | |
ggplot(., aes(x =1, y = pct, fill = vote16)) + | |
geom_col(color = "black") + | |
coord_flip() + | |
scale_fill_manual(values = c("firebrick3", "dodgerblue3")) + | |
theme_gg("Abel") + | |
theme(legend.position = "none") + | |
theme(axis.title.y=element_blank(), axis.text.y=element_blank(), axis.ticks.y=element_blank())+ | |
scale_y_continuous(labels = percent) + | |
geom_text(aes(label = paste0(pct*100, '%')), position = position_stack(vjust = 0.5), size = 6, family = "font") + | |
annotate("text", x= .75, y = .363, label = "Clinton", size = 6, family = "font") + | |
annotate("text", x= .75, y = .863, label = "Trump", size = 6, family = "font") + | |
labs(x = "", y = "", title = "Non-White Catholic Vote Choice in 2016", caption = "Data: CCES 2016") + | |
ggsave("D://dfp/catholic16vote_poc.png", height = 2) | |
gg2 <- dfp %>% | |
filter(religpew ==2) %>% | |
filter(race !=1) %>% | |
filter(djtrelct !=3) %>% | |
ct(djtrelct, wt = weight_DFP) %>% | |
mutate(vote20 = frcode(djtrelct ==1 ~ "Yes", | |
djtrelct ==2 ~ "No", | |
djtrelct ==3 ~ "Not Sure")) | |
bar2 <- gg2 %>% | |
ggplot(., aes(x =1, y = pct, fill = vote20)) + | |
geom_col(color = "black") + | |
coord_flip() + | |
scale_fill_manual(values = c("firebrick3", "dodgerblue3", "azure3")) + | |
theme_gg("Abel") + | |
theme(legend.position = "none") + | |
theme(axis.title.y=element_blank(), axis.text.y=element_blank(), axis.ticks.y=element_blank())+ | |
scale_y_continuous(labels = percent) + | |
geom_text(aes(label = paste0(pct*100, '%')), position = position_stack(vjust = 0.5), size = 6, family = "font") + | |
annotate("text", x= .75, y = .33, label = "No", size = 6, family = "font") + | |
annotate("text", x= .75, y = .83, label = "Yes", size = 6, family = "font") + | |
labs(x = "", y = "", title = "Would You Vote to Re-elect Trump in 2020? (Among Non-White Catholics)", caption = "Data: Data for Progress (2018)") + | |
ggsave("D://dfp/catholic20vote_poc.png", height = 2) | |
both <- bar1 + bar2 + plot_layout(ncol =1) | |
ggsave("D://dfp/vote16_20_poc.png", both) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment